Self-HCL:采用混合对比学习策略进行多模态情感分析的自我监督多任务学习

Youjia Fu, Junsong Fu, Huixia Xue, Zihao Xu
{"title":"Self-HCL:采用混合对比学习策略进行多模态情感分析的自我监督多任务学习","authors":"Youjia Fu, Junsong Fu, Huixia Xue, Zihao Xu","doi":"10.3390/electronics13142835","DOIUrl":null,"url":null,"abstract":"Multimodal Sentiment Analysis (MSA) plays a critical role in many applications, including customer service, personal assistants, and video understanding. Currently, the majority of research on MSA is focused on the development of multimodal representations, largely owing to the scarcity of unimodal annotations in MSA benchmark datasets. However, the sole reliance on multimodal representations to train models results in suboptimal performance due to the insufficient learning of each unimodal representation. To this end, we propose Self-HCL, which initially optimizes the unimodal features extracted from a pretrained model through the Unimodal Feature Enhancement Module (UFEM), and then uses these optimized features to jointly train multimodal and unimodal tasks. Furthermore, we employ a Hybrid Contrastive Learning (HCL) strategy to facilitate the learned representation of multimodal data, enhance the representation ability of multimodal fusion through unsupervised contrastive learning, and improve the model’s performance in the absence of unimodal annotations through supervised contrastive learning. Finally, based on the characteristics of unsupervised contrastive learning, we propose a new Unimodal Label Generation Module (ULGM) that can stably generate unimodal labels in a short training period. Extensive experiments on the benchmark datasets CMU-MOSI and CMU-MOSEI demonstrate that our model outperforms state-of-the-art methods.","PeriodicalId":504598,"journal":{"name":"Electronics","volume":" 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-HCL: Self-Supervised Multitask Learning with Hybrid Contrastive Learning Strategy for Multimodal Sentiment Analysis\",\"authors\":\"Youjia Fu, Junsong Fu, Huixia Xue, Zihao Xu\",\"doi\":\"10.3390/electronics13142835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multimodal Sentiment Analysis (MSA) plays a critical role in many applications, including customer service, personal assistants, and video understanding. Currently, the majority of research on MSA is focused on the development of multimodal representations, largely owing to the scarcity of unimodal annotations in MSA benchmark datasets. However, the sole reliance on multimodal representations to train models results in suboptimal performance due to the insufficient learning of each unimodal representation. To this end, we propose Self-HCL, which initially optimizes the unimodal features extracted from a pretrained model through the Unimodal Feature Enhancement Module (UFEM), and then uses these optimized features to jointly train multimodal and unimodal tasks. Furthermore, we employ a Hybrid Contrastive Learning (HCL) strategy to facilitate the learned representation of multimodal data, enhance the representation ability of multimodal fusion through unsupervised contrastive learning, and improve the model’s performance in the absence of unimodal annotations through supervised contrastive learning. Finally, based on the characteristics of unsupervised contrastive learning, we propose a new Unimodal Label Generation Module (ULGM) that can stably generate unimodal labels in a short training period. Extensive experiments on the benchmark datasets CMU-MOSI and CMU-MOSEI demonstrate that our model outperforms state-of-the-art methods.\",\"PeriodicalId\":504598,\"journal\":{\"name\":\"Electronics\",\"volume\":\" 14\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/electronics13142835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/electronics13142835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多模态情感分析(MSA)在客户服务、个人助理和视频理解等许多应用中发挥着至关重要的作用。目前,有关 MSA 的大部分研究都集中在多模态表征的开发上,这主要是由于 MSA 基准数据集中缺乏单模态注释。然而,仅仅依靠多模态表征来训练模型的结果是,由于对每个单模态表征的学习不足,导致性能不理想。为此,我们提出了 Self-HCL,它首先通过单模态特征增强模块(UFEM)优化从预训练模型中提取的单模态特征,然后使用这些优化特征联合训练多模态和单模态任务。此外,我们还采用了混合对比学习(HCL)策略来促进多模态数据的学习表示,通过无监督对比学习来增强多模态融合的表示能力,并通过有监督对比学习来提高模型在无单模态注释情况下的性能。最后,基于无监督对比学习的特点,我们提出了一种新的单模态标签生成模块(ULGM),它能在较短的训练期内稳定地生成单模态标签。在基准数据集 CMU-MOSI 和 CMU-MOSEI 上进行的大量实验表明,我们的模型优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-HCL: Self-Supervised Multitask Learning with Hybrid Contrastive Learning Strategy for Multimodal Sentiment Analysis
Multimodal Sentiment Analysis (MSA) plays a critical role in many applications, including customer service, personal assistants, and video understanding. Currently, the majority of research on MSA is focused on the development of multimodal representations, largely owing to the scarcity of unimodal annotations in MSA benchmark datasets. However, the sole reliance on multimodal representations to train models results in suboptimal performance due to the insufficient learning of each unimodal representation. To this end, we propose Self-HCL, which initially optimizes the unimodal features extracted from a pretrained model through the Unimodal Feature Enhancement Module (UFEM), and then uses these optimized features to jointly train multimodal and unimodal tasks. Furthermore, we employ a Hybrid Contrastive Learning (HCL) strategy to facilitate the learned representation of multimodal data, enhance the representation ability of multimodal fusion through unsupervised contrastive learning, and improve the model’s performance in the absence of unimodal annotations through supervised contrastive learning. Finally, based on the characteristics of unsupervised contrastive learning, we propose a new Unimodal Label Generation Module (ULGM) that can stably generate unimodal labels in a short training period. Extensive experiments on the benchmark datasets CMU-MOSI and CMU-MOSEI demonstrate that our model outperforms state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transformer-Based Spatiotemporal Graph Diffusion Convolution Network for Traffic Flow Forecasting Compact Walsh–Hadamard Transform-Driven S-Box Design for ASIC Implementations RETRACTED: Liu et al. Ground Risk Estimation of Unmanned Aerial Vehicles Based on Probability Approximation for Impact Positions with Multi-Uncertainties. Electronics 2023, 12, 829 The Use of TheraBracelet Upper Extremity Vibrotactile Stimulation in a Child with Cerebral Palsy—A Case Report Image Databases with Features Augmented with Singular-Point Shapes to Enhance Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1