了解移动视频编辑的服务质量:利用文本挖掘方法绘制负面印象图

Maya Ariyanti, Yumna Tazkia
{"title":"了解移动视频编辑的服务质量:利用文本挖掘方法绘制负面印象图","authors":"Maya Ariyanti, Yumna Tazkia","doi":"10.31955/mea.v8i2.4256","DOIUrl":null,"url":null,"abstract":"KineMaster is a video editing application that supports the content creator industry; however, compared to its competitors, that app falls short in release year, download numbers, and ratings. This research aims to determine the service quality of the Android-based KineMaster application based on sentiment analysis and the classification of mobile app service quality (MASQ) dimensions. The data used is secondary data from 5,000 reviews of Google Play Store using Google Colab and processed using RapidMiner Studi version 10.2. Naïve Bayes and k-Nearest Neighbors (KNN) algorithms are applied to determine the best one. Negative sentiment data resulting from the worst MASQ dimension classification will be carried out by WordCloud using Google Colab to determine complaint priorities. The research results show that positive sentiment dominates at 62.24% using the KNN algorithm as the best algorithm in this research. Nevertheless, the 37.76% negative sentiment is not ignored. Based on the number of negative sentiments in each dimension, technical reliability is the worst dimension, valence is the second worst dimension, and performance is the third worst. Prioritized complaints are update reliability, watermarks, app, feature downloads, inability to open apps, export capabilities, high price, and processing speed.","PeriodicalId":230876,"journal":{"name":"Jurnal Ilmiah Manajemen, Ekonomi, & Akuntansi (MEA)","volume":" 34","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UNDERSTANDING SERVICE QUALITY OF MOBILE VIDEO EDITING : MAPPING THE NEGATIVE IMPRESSION BY TEXT MINING APPROACH\",\"authors\":\"Maya Ariyanti, Yumna Tazkia\",\"doi\":\"10.31955/mea.v8i2.4256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"KineMaster is a video editing application that supports the content creator industry; however, compared to its competitors, that app falls short in release year, download numbers, and ratings. This research aims to determine the service quality of the Android-based KineMaster application based on sentiment analysis and the classification of mobile app service quality (MASQ) dimensions. The data used is secondary data from 5,000 reviews of Google Play Store using Google Colab and processed using RapidMiner Studi version 10.2. Naïve Bayes and k-Nearest Neighbors (KNN) algorithms are applied to determine the best one. Negative sentiment data resulting from the worst MASQ dimension classification will be carried out by WordCloud using Google Colab to determine complaint priorities. The research results show that positive sentiment dominates at 62.24% using the KNN algorithm as the best algorithm in this research. Nevertheless, the 37.76% negative sentiment is not ignored. Based on the number of negative sentiments in each dimension, technical reliability is the worst dimension, valence is the second worst dimension, and performance is the third worst. Prioritized complaints are update reliability, watermarks, app, feature downloads, inability to open apps, export capabilities, high price, and processing speed.\",\"PeriodicalId\":230876,\"journal\":{\"name\":\"Jurnal Ilmiah Manajemen, Ekonomi, & Akuntansi (MEA)\",\"volume\":\" 34\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Ilmiah Manajemen, Ekonomi, & Akuntansi (MEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31955/mea.v8i2.4256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Ilmiah Manajemen, Ekonomi, & Akuntansi (MEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31955/mea.v8i2.4256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

KineMaster是一款支持内容创作者行业的视频编辑应用程序;然而,与其竞争对手相比,该应用程序在发布年份、下载量和评分方面都存在不足。本研究旨在基于情感分析和移动应用程序服务质量(MASQ)维度分类,确定基于安卓系统的 KineMaster 应用程序的服务质量。所使用的数据是来自 Google Play 商店的 5000 条评论的二手数据,使用 Google Colab 和 RapidMiner Studi 10.2 版进行处理。采用 Naïve Bayes 和 k-Nearest Neighbors (KNN) 算法确定最佳算法。最差的 MASQ 维度分类产生的负面情感数据将由 WordCloud 使用 Google Colab 进行处理,以确定投诉优先级。研究结果表明,使用 KNN 算法作为本研究的最佳算法,正面情感占 62.24%。然而,37.76% 的负面情绪也不容忽视。根据各维度中负面情绪的数量,技术可靠性是最差的维度,情感是第二差的维度,性能是第三差的维度。优先级最高的投诉是更新可靠性、水印、应用程序、功能下载、无法打开应用程序、导出功能、价格高和处理速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UNDERSTANDING SERVICE QUALITY OF MOBILE VIDEO EDITING : MAPPING THE NEGATIVE IMPRESSION BY TEXT MINING APPROACH
KineMaster is a video editing application that supports the content creator industry; however, compared to its competitors, that app falls short in release year, download numbers, and ratings. This research aims to determine the service quality of the Android-based KineMaster application based on sentiment analysis and the classification of mobile app service quality (MASQ) dimensions. The data used is secondary data from 5,000 reviews of Google Play Store using Google Colab and processed using RapidMiner Studi version 10.2. Naïve Bayes and k-Nearest Neighbors (KNN) algorithms are applied to determine the best one. Negative sentiment data resulting from the worst MASQ dimension classification will be carried out by WordCloud using Google Colab to determine complaint priorities. The research results show that positive sentiment dominates at 62.24% using the KNN algorithm as the best algorithm in this research. Nevertheless, the 37.76% negative sentiment is not ignored. Based on the number of negative sentiments in each dimension, technical reliability is the worst dimension, valence is the second worst dimension, and performance is the third worst. Prioritized complaints are update reliability, watermarks, app, feature downloads, inability to open apps, export capabilities, high price, and processing speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EFEK MODERASI DARI GCG : ANALISIS FAKTOR YANG MENENTUKAN KINERJA KEUANGAN PADA BANK UMUM SYARIAH IMPLEMENTASI BRAND MANAGEMENT PADA AKUN INSTAGRAM KANIK.OFFICIAL KONTRIBUSI STRATEGI PROMOSI TERHADAP KEPUTUSAN PEMBELIAN PRODUK KOSMETIK HALAL PENGELOLAAN PERBAIKAN BERKELANJUTAN INVENTARIS UNTUK REDUCE COST DI PT XYZ KOTA BANDUNG, INDONESIA HOW GEOPOLITICAL, CREDIT AND FINANCIAL RISKS DEFINE ASEAN BANKS’ PERFORMANCE?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1