带柔性悬挂锯的树木障碍物清除同轴八旋翼飞行器的控制与应用

Drones Pub Date : 2024-07-17 DOI:10.3390/drones8070328
Luwei Liao, Zhong Yang, Haoze Zhuo, Nuo Xu, Wei Wang, Kun Tao, Jiabing Liang, Qiuyan Zhang
{"title":"带柔性悬挂锯的树木障碍物清除同轴八旋翼飞行器的控制与应用","authors":"Luwei Liao, Zhong Yang, Haoze Zhuo, Nuo Xu, Wei Wang, Kun Tao, Jiabing Liang, Qiuyan Zhang","doi":"10.3390/drones8070328","DOIUrl":null,"url":null,"abstract":"Aiming at the challenges of clearing tree obstacles along power transmission lines, the control and application of a novel Tree-Obstacle Clearing Coaxial Octocopter with Flexible Suspension Saw (TOCCO-FSS) have been investigated. Firstly, an overall scheme design and modeling of the TOCCO-FSS were conducted, and dynamic modeling of the TOCCO-FSS was performed using the Lagrange equation. Secondly, to address the interference encountered during the operation, a contact operation model was established to estimate the uncertainties and external disturbances during the contact operation process. Further, the Non-Singular Terminal Sliding-Mode Active Disturbance Rejection Control (NTSM-ADRC) method was researched based on the mathematical model of the TOCCO-FSS. Finally, the performance of the controller was verified through simulations and physical experiments. The results demonstrate that the design, control, and application of the entire TOCCO-FSS system are effective.","PeriodicalId":507567,"journal":{"name":"Drones","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control and Application of Tree Obstacle-Clearing Coaxial Octocopter with Flexible Suspension Saw\",\"authors\":\"Luwei Liao, Zhong Yang, Haoze Zhuo, Nuo Xu, Wei Wang, Kun Tao, Jiabing Liang, Qiuyan Zhang\",\"doi\":\"10.3390/drones8070328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the challenges of clearing tree obstacles along power transmission lines, the control and application of a novel Tree-Obstacle Clearing Coaxial Octocopter with Flexible Suspension Saw (TOCCO-FSS) have been investigated. Firstly, an overall scheme design and modeling of the TOCCO-FSS were conducted, and dynamic modeling of the TOCCO-FSS was performed using the Lagrange equation. Secondly, to address the interference encountered during the operation, a contact operation model was established to estimate the uncertainties and external disturbances during the contact operation process. Further, the Non-Singular Terminal Sliding-Mode Active Disturbance Rejection Control (NTSM-ADRC) method was researched based on the mathematical model of the TOCCO-FSS. Finally, the performance of the controller was verified through simulations and physical experiments. The results demonstrate that the design, control, and application of the entire TOCCO-FSS system are effective.\",\"PeriodicalId\":507567,\"journal\":{\"name\":\"Drones\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drones\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/drones8070328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drones","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/drones8070328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对输电线路沿线树木障碍物的清理难题,研究了新型带柔性悬挂锯的树木障碍物清理同轴八旋翼飞行器(TOCCO-FSS)的控制和应用。首先,对 TOCCO-FSS 进行了总体方案设计和建模,并利用拉格朗日方程对 TOCCO-FSS 进行了动态建模。其次,针对运行过程中遇到的干扰,建立了接触运行模型,以估计接触运行过程中的不确定性和外部干扰。然后,根据 TOCCO-FSS 的数学模型,研究了非星形终端滑动模式主动干扰抑制控制(NTSM-ADRC)方法。最后,通过仿真和物理实验验证了控制器的性能。结果表明,整个 TOCCO-FSS 系统的设计、控制和应用都是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Control and Application of Tree Obstacle-Clearing Coaxial Octocopter with Flexible Suspension Saw
Aiming at the challenges of clearing tree obstacles along power transmission lines, the control and application of a novel Tree-Obstacle Clearing Coaxial Octocopter with Flexible Suspension Saw (TOCCO-FSS) have been investigated. Firstly, an overall scheme design and modeling of the TOCCO-FSS were conducted, and dynamic modeling of the TOCCO-FSS was performed using the Lagrange equation. Secondly, to address the interference encountered during the operation, a contact operation model was established to estimate the uncertainties and external disturbances during the contact operation process. Further, the Non-Singular Terminal Sliding-Mode Active Disturbance Rejection Control (NTSM-ADRC) method was researched based on the mathematical model of the TOCCO-FSS. Finally, the performance of the controller was verified through simulations and physical experiments. The results demonstrate that the design, control, and application of the entire TOCCO-FSS system are effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved Nonlinear Model Predictive Control Based Fast Trajectory Tracking for a Quadrotor Unmanned Aerial Vehicle A General Method for Pre-Flight Preparation in Data Collection for Unmanned Aerial Vehicle-Based Bridge Inspection A Mission Planning Method for Long-Endurance Unmanned Aerial Vehicles: Integrating Heterogeneous Ground Control Resource Allocation Equivalent Spatial Plane-Based Relative Pose Estimation of UAVs Multi-Type Task Assignment Algorithm for Heterogeneous UAV Cluster Based on Improved NSGA-Ⅱ
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1