配电变电站拓扑识别方法研究

Weidong Hu, Zhao Bo, Chen Jie
{"title":"配电变电站拓扑识别方法研究","authors":"Weidong Hu, Zhao Bo, Chen Jie","doi":"10.13052/dgaej2156-3306.3932","DOIUrl":null,"url":null,"abstract":"With the advancement of digital transformation in distribution substations, a large number of smart devices are being integrated into substations. Addressing the challenges of automatic topology recognition and the issue of unstable recognition accuracy in distribution substations has become crucial. This paper proposes a substation topology recognition method based on an improved matrix approach and the Minimum Conditional Probability of Packet Loss Theorem. The improved matrix approach is utilized to calculate the topological signals, enabling automatic bottom-up topology recognition within the substation. The application of the Minimum Conditional Probability of Packet Loss Theorem in processing topological data significantly enhances the accuracy of substation topology recognition, reducing the impact of external factors on recognition accuracy. Experimental validation demonstrates that the proposed method is highly feasible and exhibits fault tolerance, indicating practical engineering applications.","PeriodicalId":11205,"journal":{"name":"Distributed Generation & Alternative Energy Journal","volume":" 47","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Distribution Substation Topology Identification Methods\",\"authors\":\"Weidong Hu, Zhao Bo, Chen Jie\",\"doi\":\"10.13052/dgaej2156-3306.3932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advancement of digital transformation in distribution substations, a large number of smart devices are being integrated into substations. Addressing the challenges of automatic topology recognition and the issue of unstable recognition accuracy in distribution substations has become crucial. This paper proposes a substation topology recognition method based on an improved matrix approach and the Minimum Conditional Probability of Packet Loss Theorem. The improved matrix approach is utilized to calculate the topological signals, enabling automatic bottom-up topology recognition within the substation. The application of the Minimum Conditional Probability of Packet Loss Theorem in processing topological data significantly enhances the accuracy of substation topology recognition, reducing the impact of external factors on recognition accuracy. Experimental validation demonstrates that the proposed method is highly feasible and exhibits fault tolerance, indicating practical engineering applications.\",\"PeriodicalId\":11205,\"journal\":{\"name\":\"Distributed Generation & Alternative Energy Journal\",\"volume\":\" 47\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Distributed Generation & Alternative Energy Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/dgaej2156-3306.3932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed Generation & Alternative Energy Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/dgaej2156-3306.3932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着配电变电站数字化转型的推进,大量智能设备被集成到变电站中。解决配电变电站拓扑自动识别的挑战和识别精度不稳定的问题变得至关重要。本文提出了一种基于改进矩阵方法和丢包最小条件概率定理的变电站拓扑识别方法。改进矩阵法用于计算拓扑信号,从而实现变电站内自下而上的自动拓扑识别。在处理拓扑数据时应用丢包最小条件概率定理,可显著提高变电站拓扑识别的准确性,减少外部因素对识别准确性的影响。实验验证表明,所提出的方法具有很高的可行性和容错性,可应用于实际工程中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on Distribution Substation Topology Identification Methods
With the advancement of digital transformation in distribution substations, a large number of smart devices are being integrated into substations. Addressing the challenges of automatic topology recognition and the issue of unstable recognition accuracy in distribution substations has become crucial. This paper proposes a substation topology recognition method based on an improved matrix approach and the Minimum Conditional Probability of Packet Loss Theorem. The improved matrix approach is utilized to calculate the topological signals, enabling automatic bottom-up topology recognition within the substation. The application of the Minimum Conditional Probability of Packet Loss Theorem in processing topological data significantly enhances the accuracy of substation topology recognition, reducing the impact of external factors on recognition accuracy. Experimental validation demonstrates that the proposed method is highly feasible and exhibits fault tolerance, indicating practical engineering applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Power Grid User Behavior Based on Data Mining Algorithms – System Design and Implementation Load Frequency Control Strategy of Interconnected Power System Based on Tube DMPC KWH Cost Analysis of Energy Storage Power Station Based on Changing Trend of Battery Cost Study on PV Power Prediction Based on VMD-IGWO-LSTM Research on Environmental Performance and Measurement of Smart City Power Supply Based on Non Radial Network DEA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1