具有全局收敛性的非线性共轭梯度方法的新修正 Secant 条件

Farhan Khalaf Muord, Muna M. M. Ali
{"title":"具有全局收敛性的非线性共轭梯度方法的新修正 Secant 条件","authors":"Farhan Khalaf Muord, Muna M. M. Ali","doi":"10.52783/cana.v31.1056","DOIUrl":null,"url":null,"abstract":"The Conjugate Gradient Methods(CGM) are well-recognized techniques for handling nonlinear optimization problems. Dai and Liao (2001) employ the secant condition approach, this study utilizes the modified secant condition proposed by Yabe-Takano (2004) and Zhang and Xu (2001), which is satisfied at each iteration through the implementation of the strong Wolf-line search condition. Additionally, please provide three novel categories of conjugate gradient algorithms of this nature. We examined 15 well-known test functions. This novel approach utilises the existing gradient and function value to accurately approximate the goal function with high-order precision. The worldwide convergence of our novel algorithms is demonstrated under certain conditions. Numerical results are provided, and the efficiency is proven by comparing it to other approaches.","PeriodicalId":40036,"journal":{"name":"Communications on Applied Nonlinear Analysis","volume":"170 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Modified Secant Condition for Non-linear Conjugate Gradient Methods with Global Convergence\",\"authors\":\"Farhan Khalaf Muord, Muna M. M. Ali\",\"doi\":\"10.52783/cana.v31.1056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Conjugate Gradient Methods(CGM) are well-recognized techniques for handling nonlinear optimization problems. Dai and Liao (2001) employ the secant condition approach, this study utilizes the modified secant condition proposed by Yabe-Takano (2004) and Zhang and Xu (2001), which is satisfied at each iteration through the implementation of the strong Wolf-line search condition. Additionally, please provide three novel categories of conjugate gradient algorithms of this nature. We examined 15 well-known test functions. This novel approach utilises the existing gradient and function value to accurately approximate the goal function with high-order precision. The worldwide convergence of our novel algorithms is demonstrated under certain conditions. Numerical results are provided, and the efficiency is proven by comparing it to other approaches.\",\"PeriodicalId\":40036,\"journal\":{\"name\":\"Communications on Applied Nonlinear Analysis\",\"volume\":\"170 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Applied Nonlinear Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52783/cana.v31.1056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Applied Nonlinear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52783/cana.v31.1056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

共轭梯度法(CGM)是处理非线性优化问题的公认技术。Dai 和 Liao(2001)采用了secant 条件方法,本研究采用了 Yabe-Takano(2004)和 Zhang 和 Xu(2001)提出的修正 secant 条件,通过实施强 Wolf 线搜索条件,在每次迭代时满足该条件。此外,我们还提供了三类新的共轭梯度算法。我们研究了 15 个著名的测试函数。这种新方法利用现有梯度和函数值,以高阶精度精确逼近目标函数。在某些条件下,我们的新算法可以在全球范围内收敛。提供了数值结果,并通过与其他方法的比较证明了其效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Modified Secant Condition for Non-linear Conjugate Gradient Methods with Global Convergence
The Conjugate Gradient Methods(CGM) are well-recognized techniques for handling nonlinear optimization problems. Dai and Liao (2001) employ the secant condition approach, this study utilizes the modified secant condition proposed by Yabe-Takano (2004) and Zhang and Xu (2001), which is satisfied at each iteration through the implementation of the strong Wolf-line search condition. Additionally, please provide three novel categories of conjugate gradient algorithms of this nature. We examined 15 well-known test functions. This novel approach utilises the existing gradient and function value to accurately approximate the goal function with high-order precision. The worldwide convergence of our novel algorithms is demonstrated under certain conditions. Numerical results are provided, and the efficiency is proven by comparing it to other approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
期刊最新文献
An Comparison of Different Cluster Head Selection Techniques for Wireless Sensor Network Matthews Partial Metric Space Using F-Contraction A Common Fixed Point Result in Menger Space Some Applications via Coupled Fixed Point Theorems for (????, ????)-H-Contraction Mappings in Partial b- Metric Spaces ARRN: Leveraging Demographic Context for Improved Semantic Personalization in Hybrid Recommendation Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1