{"title":"MgAl-NO2-LDHs 对模拟土工聚合物溶液中钢筋钝化的影响","authors":"Yuchen Wu, Zhipeng Xu, Jiangwei Zhu, Fengjiang Li, Jie Hu, Yuwei Ma, Zuhua Zhang, Haoliang Huang, Jiangxiong Wei, Qijun Yu, Caijun Shi","doi":"10.1016/j.cemconcomp.2024.105676","DOIUrl":null,"url":null,"abstract":"Because of ion exchange properties, the presence of layered double hydroxides (LDHs) influences passivation process of reinforcement embedded in geopolymer concrete. In this study, the ion exchange behavior of MgAl–NO-LDHs and its effect on the characteristics of passivation film and electrochemical behavior of passive reinforcement in simulated slag-fly ash-waste ceramic powders geopolymer solution (SGP) are extensively investigated. The results indicate that LDHs with layered structure improve the protection efficiency of adsorption layer in SGP. Further, the intercalated NO is efficiently exchanged with OH in SGP, thus increasing the thickness and corrosion resistance of the formed passivation film. However, because the adsorption layer halts NO release process, the beneficial effect is mainly observed during later immersion stage.","PeriodicalId":519419,"journal":{"name":"Cement and Concrete Composites","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of MgAl–NO2-LDHs on passivation of reinforcing steel in simulated geopolymer solution\",\"authors\":\"Yuchen Wu, Zhipeng Xu, Jiangwei Zhu, Fengjiang Li, Jie Hu, Yuwei Ma, Zuhua Zhang, Haoliang Huang, Jiangxiong Wei, Qijun Yu, Caijun Shi\",\"doi\":\"10.1016/j.cemconcomp.2024.105676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because of ion exchange properties, the presence of layered double hydroxides (LDHs) influences passivation process of reinforcement embedded in geopolymer concrete. In this study, the ion exchange behavior of MgAl–NO-LDHs and its effect on the characteristics of passivation film and electrochemical behavior of passive reinforcement in simulated slag-fly ash-waste ceramic powders geopolymer solution (SGP) are extensively investigated. The results indicate that LDHs with layered structure improve the protection efficiency of adsorption layer in SGP. Further, the intercalated NO is efficiently exchanged with OH in SGP, thus increasing the thickness and corrosion resistance of the formed passivation film. However, because the adsorption layer halts NO release process, the beneficial effect is mainly observed during later immersion stage.\",\"PeriodicalId\":519419,\"journal\":{\"name\":\"Cement and Concrete Composites\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement and Concrete Composites\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cemconcomp.2024.105676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cemconcomp.2024.105676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
由于具有离子交换特性,层状双氢氧化物(LDHs)的存在会影响嵌入土工聚合物混凝土中钢筋的钝化过程。本研究广泛研究了 MgAl-NO-LDHs 的离子交换行为及其对模拟矿渣-粉煤灰-废陶瓷粉土工聚合物溶液(SGP)中钝化膜特性和被动钢筋电化学行为的影响。结果表明,具有分层结构的 LDHs 提高了 SGP 中吸附层的保护效率。此外,夹杂的 NO 在 SGP 中与 OH 有效交换,从而增加了所形成的钝化膜的厚度和耐腐蚀性。不过,由于吸附层阻止了 NO 的释放过程,因此这种有益效果主要体现在浸泡后期。
Influence of MgAl–NO2-LDHs on passivation of reinforcing steel in simulated geopolymer solution
Because of ion exchange properties, the presence of layered double hydroxides (LDHs) influences passivation process of reinforcement embedded in geopolymer concrete. In this study, the ion exchange behavior of MgAl–NO-LDHs and its effect on the characteristics of passivation film and electrochemical behavior of passive reinforcement in simulated slag-fly ash-waste ceramic powders geopolymer solution (SGP) are extensively investigated. The results indicate that LDHs with layered structure improve the protection efficiency of adsorption layer in SGP. Further, the intercalated NO is efficiently exchanged with OH in SGP, thus increasing the thickness and corrosion resistance of the formed passivation film. However, because the adsorption layer halts NO release process, the beneficial effect is mainly observed during later immersion stage.