Emad K. Radwan , Rehab A. Omar , Aya M. Ali , Ahmed S.S. Elsayed , Ehab N. El Sawy
{"title":"带有 PEDOT 装饰 TiO2 外壳的碳布内核,用于降解新出现的有机污染物和增强型钒氧化还原液流电池","authors":"Emad K. Radwan , Rehab A. Omar , Aya M. Ali , Ahmed S.S. Elsayed , Ehab N. El Sawy","doi":"10.1016/j.susmat.2024.e01069","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, carbon cloth (CC) was enrobed with a TiO<sub>2</sub> layer (CC@TiO<sub>2</sub>) and then decorated with poly(3,4-ethylenedioxythiophene) (PEDOT, CC@TiO<sub>2</sub>-PEDOT). The XRD, Raman, XPS, and EDS results confirmed the successful preparation of the targeted materials, and SEM images revealed the targeted morphology. According to the UV–vis and PL analysis, the CC@TiO<sub>2</sub>-PEDOT exhibits wide and strong photoabsorption across the UV–vis spectrum, and the photogenerated charge carriers have a long lifespan and low recombination rate. The photocatalytic assessment revealed that CC@TiO<sub>2</sub>-PEDOT was more efficient than CC@TiO<sub>2</sub> and CC@PEDOT in degrading both benzotriazole and 2-hydroxybenzothiazole. However, 2-hydroxybenzothiazole was more stable than benzotriazole. The superoxide anion radicals, holes, and/or hydroxyl radicals of CC@TiO<sub>2</sub>-PEDOT played pivotal roles in the photocatalytic degradation of benzotriazole. After the photocatalytic process, the benzotriazole solution was safe to use. The CC@TiO<sub>2</sub> and CC@TiO<sub>2</sub>-PEDOT exhibited a superior performance as a potential cathode for vanadium redox flow batteries (VRFBs) and effectively mitigated the parasitic influence of the hydrogen evolution reaction (HER). CC@TiO<sub>2</sub> and CC@TiO<sub>2</sub>-PEDOT displayed significantly smaller peak separation of 94 and 62 mV, at a scan rate of 5 mV/s, respectively, and a higher suppression for HER compared to CC or CC@PEDOT. The performance of the CC@TiO<sub>2</sub> and CC@TiO<sub>2</sub>-PEDOT electrodes manifests their high reversibility for the V(II)/V(III) redox reaction. This research underscores the multifaceted potential of CC@TiO<sub>2</sub>-PEDOT as a promising material for addressing water purification challenges and advancing VRFBs for sustainable energy applications.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"41 ","pages":"Article e01069"},"PeriodicalIF":8.6000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon cloth core with a PEDOT decorated TiO2 shell for degradation of emerging organic contaminants and enhanced vanadium redox flow batteries\",\"authors\":\"Emad K. Radwan , Rehab A. Omar , Aya M. Ali , Ahmed S.S. Elsayed , Ehab N. El Sawy\",\"doi\":\"10.1016/j.susmat.2024.e01069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, carbon cloth (CC) was enrobed with a TiO<sub>2</sub> layer (CC@TiO<sub>2</sub>) and then decorated with poly(3,4-ethylenedioxythiophene) (PEDOT, CC@TiO<sub>2</sub>-PEDOT). The XRD, Raman, XPS, and EDS results confirmed the successful preparation of the targeted materials, and SEM images revealed the targeted morphology. According to the UV–vis and PL analysis, the CC@TiO<sub>2</sub>-PEDOT exhibits wide and strong photoabsorption across the UV–vis spectrum, and the photogenerated charge carriers have a long lifespan and low recombination rate. The photocatalytic assessment revealed that CC@TiO<sub>2</sub>-PEDOT was more efficient than CC@TiO<sub>2</sub> and CC@PEDOT in degrading both benzotriazole and 2-hydroxybenzothiazole. However, 2-hydroxybenzothiazole was more stable than benzotriazole. The superoxide anion radicals, holes, and/or hydroxyl radicals of CC@TiO<sub>2</sub>-PEDOT played pivotal roles in the photocatalytic degradation of benzotriazole. After the photocatalytic process, the benzotriazole solution was safe to use. The CC@TiO<sub>2</sub> and CC@TiO<sub>2</sub>-PEDOT exhibited a superior performance as a potential cathode for vanadium redox flow batteries (VRFBs) and effectively mitigated the parasitic influence of the hydrogen evolution reaction (HER). CC@TiO<sub>2</sub> and CC@TiO<sub>2</sub>-PEDOT displayed significantly smaller peak separation of 94 and 62 mV, at a scan rate of 5 mV/s, respectively, and a higher suppression for HER compared to CC or CC@PEDOT. The performance of the CC@TiO<sub>2</sub> and CC@TiO<sub>2</sub>-PEDOT electrodes manifests their high reversibility for the V(II)/V(III) redox reaction. This research underscores the multifaceted potential of CC@TiO<sub>2</sub>-PEDOT as a promising material for addressing water purification challenges and advancing VRFBs for sustainable energy applications.</p></div>\",\"PeriodicalId\":22097,\"journal\":{\"name\":\"Sustainable Materials and Technologies\",\"volume\":\"41 \",\"pages\":\"Article e01069\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Materials and Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214993724002495\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993724002495","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Carbon cloth core with a PEDOT decorated TiO2 shell for degradation of emerging organic contaminants and enhanced vanadium redox flow batteries
In this study, carbon cloth (CC) was enrobed with a TiO2 layer (CC@TiO2) and then decorated with poly(3,4-ethylenedioxythiophene) (PEDOT, CC@TiO2-PEDOT). The XRD, Raman, XPS, and EDS results confirmed the successful preparation of the targeted materials, and SEM images revealed the targeted morphology. According to the UV–vis and PL analysis, the CC@TiO2-PEDOT exhibits wide and strong photoabsorption across the UV–vis spectrum, and the photogenerated charge carriers have a long lifespan and low recombination rate. The photocatalytic assessment revealed that CC@TiO2-PEDOT was more efficient than CC@TiO2 and CC@PEDOT in degrading both benzotriazole and 2-hydroxybenzothiazole. However, 2-hydroxybenzothiazole was more stable than benzotriazole. The superoxide anion radicals, holes, and/or hydroxyl radicals of CC@TiO2-PEDOT played pivotal roles in the photocatalytic degradation of benzotriazole. After the photocatalytic process, the benzotriazole solution was safe to use. The CC@TiO2 and CC@TiO2-PEDOT exhibited a superior performance as a potential cathode for vanadium redox flow batteries (VRFBs) and effectively mitigated the parasitic influence of the hydrogen evolution reaction (HER). CC@TiO2 and CC@TiO2-PEDOT displayed significantly smaller peak separation of 94 and 62 mV, at a scan rate of 5 mV/s, respectively, and a higher suppression for HER compared to CC or CC@PEDOT. The performance of the CC@TiO2 and CC@TiO2-PEDOT electrodes manifests their high reversibility for the V(II)/V(III) redox reaction. This research underscores the multifaceted potential of CC@TiO2-PEDOT as a promising material for addressing water purification challenges and advancing VRFBs for sustainable energy applications.
期刊介绍:
Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.