{"title":"高频超声辅助莫氏显微外科手术治疗原发性皮纤维肉瘤","authors":"","doi":"10.1016/j.bjps.2024.07.013","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Dermatofibrosarcoma protuberans (DFSP) is a superficial sarcoma characterized by infiltrative growth with tentacle-like borders. Mohs micrographic surgery (MMS) is the preferred treatment option for DFSP. However, the imprecise boundary localization in MMS leads to an increased number of Mohs layers required and a longer surgery time. High-frequency ultrasound has excellent tissue recognition capability for DFSP, allowing for precise boundary marking.</p></div><div><h3>Materials and Methods</h3><p>In this study, we retrospectively analyzed 14 cases of DFSP treated with MMS using preoperative ultrasound localization and three-dimensional reconstruction at Xiangya Hospital over the past 5 years. We also reviewed previous studies on MMS for DFSP treatment.</p></div><div><h3>Results</h3><p>It was found that the average number of Mohs layers for patients after preoperative ultrasound localization was 1.57, ranging from 1 to 3, which was less than the previously reported 1.86 layers, ranging from 1 to 12. This effectively reduced the number of Mohs layers required.</p></div><div><h3>Conclusions</h3><p>By utilizing preoperative high-frequency ultrasound to determine the boundaries and depth of DFSP, the number of Mohs layers can be effectively reduced, leading to less workload for pathological examination, shorter operation time, and reduced surgical risks for patients. Ultrasound imaging data can be used for three-dimensional reconstruction, enabling less experienced Mohs surgeons to have a visual understanding of the morphology and extent of infiltration of the lesions. This aids in developing optimal surgical plans, smoothing the learning curve, and promoting the wider adoption of MMS.</p></div>","PeriodicalId":50084,"journal":{"name":"Journal of Plastic Reconstructive and Aesthetic Surgery","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-frequency ultrasound-assisted Mohs micrographic surgery for the treatment of dermatofibrosarcoma protuberans\",\"authors\":\"\",\"doi\":\"10.1016/j.bjps.2024.07.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Dermatofibrosarcoma protuberans (DFSP) is a superficial sarcoma characterized by infiltrative growth with tentacle-like borders. Mohs micrographic surgery (MMS) is the preferred treatment option for DFSP. However, the imprecise boundary localization in MMS leads to an increased number of Mohs layers required and a longer surgery time. High-frequency ultrasound has excellent tissue recognition capability for DFSP, allowing for precise boundary marking.</p></div><div><h3>Materials and Methods</h3><p>In this study, we retrospectively analyzed 14 cases of DFSP treated with MMS using preoperative ultrasound localization and three-dimensional reconstruction at Xiangya Hospital over the past 5 years. We also reviewed previous studies on MMS for DFSP treatment.</p></div><div><h3>Results</h3><p>It was found that the average number of Mohs layers for patients after preoperative ultrasound localization was 1.57, ranging from 1 to 3, which was less than the previously reported 1.86 layers, ranging from 1 to 12. This effectively reduced the number of Mohs layers required.</p></div><div><h3>Conclusions</h3><p>By utilizing preoperative high-frequency ultrasound to determine the boundaries and depth of DFSP, the number of Mohs layers can be effectively reduced, leading to less workload for pathological examination, shorter operation time, and reduced surgical risks for patients. Ultrasound imaging data can be used for three-dimensional reconstruction, enabling less experienced Mohs surgeons to have a visual understanding of the morphology and extent of infiltration of the lesions. This aids in developing optimal surgical plans, smoothing the learning curve, and promoting the wider adoption of MMS.</p></div>\",\"PeriodicalId\":50084,\"journal\":{\"name\":\"Journal of Plastic Reconstructive and Aesthetic Surgery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plastic Reconstructive and Aesthetic Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1748681524003838\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plastic Reconstructive and Aesthetic Surgery","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748681524003838","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
High-frequency ultrasound-assisted Mohs micrographic surgery for the treatment of dermatofibrosarcoma protuberans
Background
Dermatofibrosarcoma protuberans (DFSP) is a superficial sarcoma characterized by infiltrative growth with tentacle-like borders. Mohs micrographic surgery (MMS) is the preferred treatment option for DFSP. However, the imprecise boundary localization in MMS leads to an increased number of Mohs layers required and a longer surgery time. High-frequency ultrasound has excellent tissue recognition capability for DFSP, allowing for precise boundary marking.
Materials and Methods
In this study, we retrospectively analyzed 14 cases of DFSP treated with MMS using preoperative ultrasound localization and three-dimensional reconstruction at Xiangya Hospital over the past 5 years. We also reviewed previous studies on MMS for DFSP treatment.
Results
It was found that the average number of Mohs layers for patients after preoperative ultrasound localization was 1.57, ranging from 1 to 3, which was less than the previously reported 1.86 layers, ranging from 1 to 12. This effectively reduced the number of Mohs layers required.
Conclusions
By utilizing preoperative high-frequency ultrasound to determine the boundaries and depth of DFSP, the number of Mohs layers can be effectively reduced, leading to less workload for pathological examination, shorter operation time, and reduced surgical risks for patients. Ultrasound imaging data can be used for three-dimensional reconstruction, enabling less experienced Mohs surgeons to have a visual understanding of the morphology and extent of infiltration of the lesions. This aids in developing optimal surgical plans, smoothing the learning curve, and promoting the wider adoption of MMS.
期刊介绍:
JPRAS An International Journal of Surgical Reconstruction is one of the world''s leading international journals, covering all the reconstructive and aesthetic aspects of plastic surgery.
The journal presents the latest surgical procedures with audit and outcome studies of new and established techniques in plastic surgery including: cleft lip and palate and other heads and neck surgery, hand surgery, lower limb trauma, burns, skin cancer, breast surgery and aesthetic surgery.