{"title":"4′-phenyl -2, 2′: 6′, 2′'-terpyridine 衍生物作为金属化学传感器。从实验和理论看锌(II)、镉(II)和汞(II)的螯合和荧光能力","authors":"","doi":"10.1016/j.jphotochem.2024.115885","DOIUrl":null,"url":null,"abstract":"<div><p>4′-phenylterpyridine (TPY) involves four conjugated rings, leading to a multi-resonant chromophore with exceptional luminescent features. Further functionalization of the 4′-phenyl moiety enables a versatile set of chemosensors. In the series, the optical transitions remain similar, where λ<sub>max</sub> ranges from 253 to 269 nm, with emissions from 357 to 365 nm. Calculations of the natural transition orbitals NTOs deliver the localized hole-electron densities, indicating that the electronic transitions vary as a local-excitation (LE), charge transfer (CT), and mixed LE-CT along with the set. We employ the energy decomposition analysis to evaluate the possible coordination toward Zn(II), Cd(II), and Hg(II) cations, showing a favorable formation of complexes, where the interaction nature exhibits a ∼ 49 and ∼ 50 % electrostatic and orbital character for the Zn(II), Cd(II) and Hg(II) centers. Furthermore, the density deformation channels confer an explicit picture of the bonding scheme, denoting <em>π</em>- and σ-bonding contributions.</p></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"4′–phenyl −2, 2′: 6′, 2′’-terpyridine derivatives as metal chemosensors. Chelation and fluorescence capabilities towards Zn(II), Cd(II), and Hg(II) from experiment and theory\",\"authors\":\"\",\"doi\":\"10.1016/j.jphotochem.2024.115885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>4′-phenylterpyridine (TPY) involves four conjugated rings, leading to a multi-resonant chromophore with exceptional luminescent features. Further functionalization of the 4′-phenyl moiety enables a versatile set of chemosensors. In the series, the optical transitions remain similar, where λ<sub>max</sub> ranges from 253 to 269 nm, with emissions from 357 to 365 nm. Calculations of the natural transition orbitals NTOs deliver the localized hole-electron densities, indicating that the electronic transitions vary as a local-excitation (LE), charge transfer (CT), and mixed LE-CT along with the set. We employ the energy decomposition analysis to evaluate the possible coordination toward Zn(II), Cd(II), and Hg(II) cations, showing a favorable formation of complexes, where the interaction nature exhibits a ∼ 49 and ∼ 50 % electrostatic and orbital character for the Zn(II), Cd(II) and Hg(II) centers. Furthermore, the density deformation channels confer an explicit picture of the bonding scheme, denoting <em>π</em>- and σ-bonding contributions.</p></div>\",\"PeriodicalId\":16782,\"journal\":{\"name\":\"Journal of Photochemistry and Photobiology A-chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photochemistry and Photobiology A-chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1010603024004295\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1010603024004295","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
4′–phenyl −2, 2′: 6′, 2′’-terpyridine derivatives as metal chemosensors. Chelation and fluorescence capabilities towards Zn(II), Cd(II), and Hg(II) from experiment and theory
4′-phenylterpyridine (TPY) involves four conjugated rings, leading to a multi-resonant chromophore with exceptional luminescent features. Further functionalization of the 4′-phenyl moiety enables a versatile set of chemosensors. In the series, the optical transitions remain similar, where λmax ranges from 253 to 269 nm, with emissions from 357 to 365 nm. Calculations of the natural transition orbitals NTOs deliver the localized hole-electron densities, indicating that the electronic transitions vary as a local-excitation (LE), charge transfer (CT), and mixed LE-CT along with the set. We employ the energy decomposition analysis to evaluate the possible coordination toward Zn(II), Cd(II), and Hg(II) cations, showing a favorable formation of complexes, where the interaction nature exhibits a ∼ 49 and ∼ 50 % electrostatic and orbital character for the Zn(II), Cd(II) and Hg(II) centers. Furthermore, the density deformation channels confer an explicit picture of the bonding scheme, denoting π- and σ-bonding contributions.
期刊介绍:
JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds.
All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor).
The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.