Wanying Zhang , Modi Jiang , Yanming Liu , Weizheng Cheng , Yang Li , Kexian Song , Peng Tao , Chengyi Song , Benwei Fu , Tao Deng , Wen Shang
{"title":"液滴冷却诱导产生大热释电电流","authors":"Wanying Zhang , Modi Jiang , Yanming Liu , Weizheng Cheng , Yang Li , Kexian Song , Peng Tao , Chengyi Song , Benwei Fu , Tao Deng , Wen Shang","doi":"10.1016/j.pnsc.2024.07.006","DOIUrl":null,"url":null,"abstract":"<div><div><span>This paper demonstrates an alternative and simple approach for achieving a fast temperature change on a pyroelectric system through droplet cooling, which leads to enhancement in pyroelectric current generation. The pyroelectric system was composed of a pyroelectric layer of lithium tantalate (LiTaO</span><sub>3</sub>) that was sandwiched between two layers of gold/titanium (Au/Ti) as the top and bottom electrodes. Due to both high latent heat and sensible heat of water, there was a rapid heat exchange during the droplet cooling process, and the pyroelectric layer underwent a fast temperature change with the maximum rate of ∼725 °C/s. The induced pyroelectric current density reached as high as ∼8.8 μA/cm<sup>2</sup><span><span>. Such pyro-current density is among the highest reported so far. The pyroelectric response was also investigated by using the surfaces with different wettability. The </span>hydrophilic surfaces<span> underwent faster heat dissipation, leading to the generation of larger current than that of the hydrophobic surfaces<span> during the droplet cooling process. This work may help expand the utilization of pyroelectric materials in various applications that involve the current generation using pyroelectric effect.</span></span></span></div></div>","PeriodicalId":20742,"journal":{"name":"Progress in Natural Science: Materials International","volume":"34 5","pages":"Pages 888-894"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large pyroelectric current generation induced by droplet cooling\",\"authors\":\"Wanying Zhang , Modi Jiang , Yanming Liu , Weizheng Cheng , Yang Li , Kexian Song , Peng Tao , Chengyi Song , Benwei Fu , Tao Deng , Wen Shang\",\"doi\":\"10.1016/j.pnsc.2024.07.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><span>This paper demonstrates an alternative and simple approach for achieving a fast temperature change on a pyroelectric system through droplet cooling, which leads to enhancement in pyroelectric current generation. The pyroelectric system was composed of a pyroelectric layer of lithium tantalate (LiTaO</span><sub>3</sub>) that was sandwiched between two layers of gold/titanium (Au/Ti) as the top and bottom electrodes. Due to both high latent heat and sensible heat of water, there was a rapid heat exchange during the droplet cooling process, and the pyroelectric layer underwent a fast temperature change with the maximum rate of ∼725 °C/s. The induced pyroelectric current density reached as high as ∼8.8 μA/cm<sup>2</sup><span><span>. Such pyro-current density is among the highest reported so far. The pyroelectric response was also investigated by using the surfaces with different wettability. The </span>hydrophilic surfaces<span> underwent faster heat dissipation, leading to the generation of larger current than that of the hydrophobic surfaces<span> during the droplet cooling process. This work may help expand the utilization of pyroelectric materials in various applications that involve the current generation using pyroelectric effect.</span></span></span></div></div>\",\"PeriodicalId\":20742,\"journal\":{\"name\":\"Progress in Natural Science: Materials International\",\"volume\":\"34 5\",\"pages\":\"Pages 888-894\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Natural Science: Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1002007124001552\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Natural Science: Materials International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002007124001552","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Large pyroelectric current generation induced by droplet cooling
This paper demonstrates an alternative and simple approach for achieving a fast temperature change on a pyroelectric system through droplet cooling, which leads to enhancement in pyroelectric current generation. The pyroelectric system was composed of a pyroelectric layer of lithium tantalate (LiTaO3) that was sandwiched between two layers of gold/titanium (Au/Ti) as the top and bottom electrodes. Due to both high latent heat and sensible heat of water, there was a rapid heat exchange during the droplet cooling process, and the pyroelectric layer underwent a fast temperature change with the maximum rate of ∼725 °C/s. The induced pyroelectric current density reached as high as ∼8.8 μA/cm2. Such pyro-current density is among the highest reported so far. The pyroelectric response was also investigated by using the surfaces with different wettability. The hydrophilic surfaces underwent faster heat dissipation, leading to the generation of larger current than that of the hydrophobic surfaces during the droplet cooling process. This work may help expand the utilization of pyroelectric materials in various applications that involve the current generation using pyroelectric effect.
期刊介绍:
Progress in Natural Science: Materials International provides scientists and engineers throughout the world with a central vehicle for the exchange and dissemination of basic theoretical studies and applied research of advanced materials. The emphasis is placed on original research, both analytical and experimental, which is of permanent interest to engineers and scientists, covering all aspects of new materials and technologies, such as, energy and environmental materials; advanced structural materials; advanced transportation materials, functional and electronic materials; nano-scale and amorphous materials; health and biological materials; materials modeling and simulation; materials characterization; and so on. The latest research achievements and innovative papers in basic theoretical studies and applied research of material science will be carefully selected and promptly reported. Thus, the aim of this Journal is to serve the global materials science and technology community with the latest research findings.
As a service to readers, an international bibliography of recent publications in advanced materials is published bimonthly.