基于贫困指标对北苏门答腊岛地区/城市进行聚类的 K-Means 方法的实施情况

Syafira Eka Wardani, Syaiful Zuhri Harahap, Rahma Muti’ah
{"title":"基于贫困指标对北苏门答腊岛地区/城市进行聚类的 K-Means 方法的实施情况","authors":"Syafira Eka Wardani, Syaiful Zuhri Harahap, Rahma Muti’ah","doi":"10.33395/sinkron.v8i3.13720","DOIUrl":null,"url":null,"abstract":"Poverty has many negative effects on people's lives, such as difficulty meeting basic needs, limited access to adequate health and education services, and limited economic opportunities. North Sumatra faces significant poverty problems as one of the largest provinces in Indonesia. This requires special attention and a thorough investigation. Reducing poverty is a very important issue for the government of North Sumatra Province. Poverty-alleviation strategies can no longer be applied uniformly. Instead, it is necessary to consider all the factors that cause poverty in each region. This means that the approach that must be given to each regency or city based on its poverty level must be adjusted. To overcome this problem, clustering must be carried out to identify areas with different levels of welfare. The aim of this research is to cluster regencies and cities in North Sumatra Province using the K-means method based on poverty indicator variables. This research only uses three poverty indicators: gross regional domestic product, human development index, and unemployment rate. The optimal number of clusters is determined based on the results of the silhouette coefficient. The research method begins with dataset collection, exploratory data analysis, data preprocessing, and k-means clustering. The value k = 6 produces a silhouette coefficient of 0.4135. This research produced six regency/city clusters. Cluster 1 consists of 11 regencies and 1 city; cluster 2 consists of 1 regency and 2 cities; cluster 3 consists of 4 regencies; cluster 4 consists of 7 regencies; cluster 5 consists of 4 cities; and cluster 6 consists of 2 regencies and 1 city. The variables gross regional domestic product, human development index, and unemployment rate have a big influence on the cluster results. This will enable the government to adopt policies to tackle poverty quickly and effectively.","PeriodicalId":34046,"journal":{"name":"Sinkron","volume":"58 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of the K-Means Method for Clustering Regency/City in North Sumatra based on Poverty Indicators\",\"authors\":\"Syafira Eka Wardani, Syaiful Zuhri Harahap, Rahma Muti’ah\",\"doi\":\"10.33395/sinkron.v8i3.13720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Poverty has many negative effects on people's lives, such as difficulty meeting basic needs, limited access to adequate health and education services, and limited economic opportunities. North Sumatra faces significant poverty problems as one of the largest provinces in Indonesia. This requires special attention and a thorough investigation. Reducing poverty is a very important issue for the government of North Sumatra Province. Poverty-alleviation strategies can no longer be applied uniformly. Instead, it is necessary to consider all the factors that cause poverty in each region. This means that the approach that must be given to each regency or city based on its poverty level must be adjusted. To overcome this problem, clustering must be carried out to identify areas with different levels of welfare. The aim of this research is to cluster regencies and cities in North Sumatra Province using the K-means method based on poverty indicator variables. This research only uses three poverty indicators: gross regional domestic product, human development index, and unemployment rate. The optimal number of clusters is determined based on the results of the silhouette coefficient. The research method begins with dataset collection, exploratory data analysis, data preprocessing, and k-means clustering. The value k = 6 produces a silhouette coefficient of 0.4135. This research produced six regency/city clusters. Cluster 1 consists of 11 regencies and 1 city; cluster 2 consists of 1 regency and 2 cities; cluster 3 consists of 4 regencies; cluster 4 consists of 7 regencies; cluster 5 consists of 4 cities; and cluster 6 consists of 2 regencies and 1 city. The variables gross regional domestic product, human development index, and unemployment rate have a big influence on the cluster results. This will enable the government to adopt policies to tackle poverty quickly and effectively.\",\"PeriodicalId\":34046,\"journal\":{\"name\":\"Sinkron\",\"volume\":\"58 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sinkron\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33395/sinkron.v8i3.13720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sinkron","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33395/sinkron.v8i3.13720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

贫困对人们的生活产生了许多负面影响,如难以满足基本需求、难以获得适当的医疗和教育服务以及经济机会有限等。作为印尼最大的省份之一,北苏门答腊面临着严重的贫困问题。这需要特别关注和深入调查。减少贫困是北苏门答腊省政府面临的一个非常重要的问题。不能再千篇一律地实施扶贫战略。相反,有必要考虑造成各地区贫困的所有因素。这就意味着,必须根据每个县或市的贫困程度来调整扶贫方法。为了解决这个问题,必须进行分组,以确定福利水平不同的地区。本研究的目的是使用基于贫困指标变量的 K-means 方法对北苏门答腊省的县市进行聚类。本研究仅使用三个贫困指标:地区国内生产总值、人类发展指数和失业率。根据剪影系数的结果确定最佳聚类数量。研究方法从数据集收集、探索性数据分析、数据预处理和 k 均值聚类开始。k = 6 的值产生的剪影系数为 0.4135。这项研究产生了六个县/市聚类。群组 1 由 11 个县和 1 个市组成;群组 2 由 1 个县和 2 个市组成;群组 3 由 4 个县组成;群组 4 由 7 个县组成;群组 5 由 4 个市组成;群组 6 由 2 个县和 1 个市组成。地区国内生产总值、人类发展指数和失业率等变量对群组结果有很大影响。这将使政府能够采取快速有效的政策来解决贫困问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementation of the K-Means Method for Clustering Regency/City in North Sumatra based on Poverty Indicators
Poverty has many negative effects on people's lives, such as difficulty meeting basic needs, limited access to adequate health and education services, and limited economic opportunities. North Sumatra faces significant poverty problems as one of the largest provinces in Indonesia. This requires special attention and a thorough investigation. Reducing poverty is a very important issue for the government of North Sumatra Province. Poverty-alleviation strategies can no longer be applied uniformly. Instead, it is necessary to consider all the factors that cause poverty in each region. This means that the approach that must be given to each regency or city based on its poverty level must be adjusted. To overcome this problem, clustering must be carried out to identify areas with different levels of welfare. The aim of this research is to cluster regencies and cities in North Sumatra Province using the K-means method based on poverty indicator variables. This research only uses three poverty indicators: gross regional domestic product, human development index, and unemployment rate. The optimal number of clusters is determined based on the results of the silhouette coefficient. The research method begins with dataset collection, exploratory data analysis, data preprocessing, and k-means clustering. The value k = 6 produces a silhouette coefficient of 0.4135. This research produced six regency/city clusters. Cluster 1 consists of 11 regencies and 1 city; cluster 2 consists of 1 regency and 2 cities; cluster 3 consists of 4 regencies; cluster 4 consists of 7 regencies; cluster 5 consists of 4 cities; and cluster 6 consists of 2 regencies and 1 city. The variables gross regional domestic product, human development index, and unemployment rate have a big influence on the cluster results. This will enable the government to adopt policies to tackle poverty quickly and effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
204
审稿时长
4 weeks
期刊最新文献
Sales Trend Analysis With Machine Learning Linear Regression Algorithm Method Classification of Breast Cancer with Transfer Learning on Convolutional Neural Network Models Comparison Of Exponesial Smoothing With Linear Regression Predicting Amount Of Goods Sales Decision Support System Using the TOPSIS Method in New Teacher Selection A CNN Model for ODOL Truck Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1