固定磨蚀工艺建模的进展

IF 3.2 3区 工程技术 Q2 ENGINEERING, INDUSTRIAL Cirp Annals-Manufacturing Technology Pub Date : 2024-01-01 DOI:10.1016/j.cirp.2024.05.001
Peter Krajnik (2) , Konrad Wegener (1) , Thomas Bergs (2) , Albert J. Shih (1)
{"title":"固定磨蚀工艺建模的进展","authors":"Peter Krajnik (2) ,&nbsp;Konrad Wegener (1) ,&nbsp;Thomas Bergs (2) ,&nbsp;Albert J. Shih (1)","doi":"10.1016/j.cirp.2024.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>Research over the last 70 years has led to a better understanding of fixed-abrasive machining processes. This knowledge is often expressed in the form of physical and empirical models that cover forces, power, specific energy, wheel/workpiece topography, wear, thermal aspects, cooling, dressing, and more. This paper first examines the established models that continue to constitute the fundamental knowledge base in fixed-abrasive technology. Special attention is given to geometry, kinematics, and thermomechanical modeling. Recent advances in process monitoring and big data analytics provide new opportunities to further strengthen the state of the art in modeling through data-driven approaches. In addition, examples on how models – implemented in simulation software – can be used to predict and optimize industrial operations have been demonstrated. This is illustrated by several use cases from real production, including bearing, creep-feed form, gear, camshaft, crankshaft, and centerless grinding, along with diamond-wheel truing.</p></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"73 2","pages":"Pages 589-614"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0007850624001173/pdfft?md5=83d2ec4e5ceef093e3216adff6557d0b&pid=1-s2.0-S0007850624001173-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Advances in modeling of fixed-abrasive processes\",\"authors\":\"Peter Krajnik (2) ,&nbsp;Konrad Wegener (1) ,&nbsp;Thomas Bergs (2) ,&nbsp;Albert J. Shih (1)\",\"doi\":\"10.1016/j.cirp.2024.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Research over the last 70 years has led to a better understanding of fixed-abrasive machining processes. This knowledge is often expressed in the form of physical and empirical models that cover forces, power, specific energy, wheel/workpiece topography, wear, thermal aspects, cooling, dressing, and more. This paper first examines the established models that continue to constitute the fundamental knowledge base in fixed-abrasive technology. Special attention is given to geometry, kinematics, and thermomechanical modeling. Recent advances in process monitoring and big data analytics provide new opportunities to further strengthen the state of the art in modeling through data-driven approaches. In addition, examples on how models – implemented in simulation software – can be used to predict and optimize industrial operations have been demonstrated. This is illustrated by several use cases from real production, including bearing, creep-feed form, gear, camshaft, crankshaft, and centerless grinding, along with diamond-wheel truing.</p></div>\",\"PeriodicalId\":55256,\"journal\":{\"name\":\"Cirp Annals-Manufacturing Technology\",\"volume\":\"73 2\",\"pages\":\"Pages 589-614\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0007850624001173/pdfft?md5=83d2ec4e5ceef093e3216adff6557d0b&pid=1-s2.0-S0007850624001173-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cirp Annals-Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007850624001173\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007850624001173","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

过去 70 年的研究使人们对固定磨具加工工艺有了更深入的了解。这些知识通常以物理和经验模型的形式表达,涵盖力、功率、比能量、砂轮/工件形貌、磨损、热方面、冷却、修整等。本文首先探讨了构成固定磨具技术基础知识的既定模型。本文特别关注几何、运动学和热力学建模。过程监控和大数据分析的最新进展为通过数据驱动方法进一步加强建模技术提供了新的机遇。此外,还举例说明了在仿真软件中实施的模型如何用于预测和优化工业运行。实际生产中的几个使用案例说明了这一点,包括轴承、蠕变进给形式、齿轮、凸轮轴、曲轴和无心磨削以及金刚石砂轮修整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advances in modeling of fixed-abrasive processes

Research over the last 70 years has led to a better understanding of fixed-abrasive machining processes. This knowledge is often expressed in the form of physical and empirical models that cover forces, power, specific energy, wheel/workpiece topography, wear, thermal aspects, cooling, dressing, and more. This paper first examines the established models that continue to constitute the fundamental knowledge base in fixed-abrasive technology. Special attention is given to geometry, kinematics, and thermomechanical modeling. Recent advances in process monitoring and big data analytics provide new opportunities to further strengthen the state of the art in modeling through data-driven approaches. In addition, examples on how models – implemented in simulation software – can be used to predict and optimize industrial operations have been demonstrated. This is illustrated by several use cases from real production, including bearing, creep-feed form, gear, camshaft, crankshaft, and centerless grinding, along with diamond-wheel truing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cirp Annals-Manufacturing Technology
Cirp Annals-Manufacturing Technology 工程技术-工程:工业
CiteScore
7.50
自引率
9.80%
发文量
137
审稿时长
13.5 months
期刊介绍: CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems. This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include: Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.
期刊最新文献
Interfacial characteristics in multi-material laser powder bed fusion of CuZr/316L stainless steel Dynamic characterization and control of a back-support exoskeleton 3D-printed cycloidal actuator Throughput scaling and thermomechanical behaviour in multiplexed fused filament fabrication Generative AI and neural networks towards advanced robot cognition Precision optimized process design for highly repeatable handling with articulated industrial robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1