Peng Chen , Jianmin Huang , Chenghao Fei , Rao Fu , Min Wei , Hong Zhang , Chang Liu , Qiaosheng Guo , Hongzhuan Shi
{"title":"基于多变量数据融合与 DBN 分类算法的伊萨提斯 Radix 起源追踪","authors":"Peng Chen , Jianmin Huang , Chenghao Fei , Rao Fu , Min Wei , Hong Zhang , Chang Liu , Qiaosheng Guo , Hongzhuan Shi","doi":"10.1016/j.chemolab.2024.105190","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, multidimensional characterization data such as chromaticity value, texture and compositional content of Isatidis Radix from different regions (Anhui; Hubei; Shaanxi; Xinjiang) were collected. By multivariate statistical analysis, 44 characterization factors (VIP >1, <em>P</em> < 0.05) were selected to distinguish the origin of Isatidis Radix. In addition, a unique artificial intelligence algorithm was created and optimized by merging 44 characterization factors with the deep belief network (DBN) classification algorithm. Compared with the traditional discriminant analysis method, the accuracy of this new method was significantly improved, and the discrimination rate of Isatidis Radix origin reached 100 %, and the traceability accuracy of Isatidis Radix also reached 100 %. This study supports the development of intelligent algorithms based on data fusion to track the origin of more agricultural products.</p></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"252 ","pages":"Article 105190"},"PeriodicalIF":3.7000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tracing the origin of isatidis radix based on multivariate data fusion combined with DBN classification algorithm\",\"authors\":\"Peng Chen , Jianmin Huang , Chenghao Fei , Rao Fu , Min Wei , Hong Zhang , Chang Liu , Qiaosheng Guo , Hongzhuan Shi\",\"doi\":\"10.1016/j.chemolab.2024.105190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, multidimensional characterization data such as chromaticity value, texture and compositional content of Isatidis Radix from different regions (Anhui; Hubei; Shaanxi; Xinjiang) were collected. By multivariate statistical analysis, 44 characterization factors (VIP >1, <em>P</em> < 0.05) were selected to distinguish the origin of Isatidis Radix. In addition, a unique artificial intelligence algorithm was created and optimized by merging 44 characterization factors with the deep belief network (DBN) classification algorithm. Compared with the traditional discriminant analysis method, the accuracy of this new method was significantly improved, and the discrimination rate of Isatidis Radix origin reached 100 %, and the traceability accuracy of Isatidis Radix also reached 100 %. This study supports the development of intelligent algorithms based on data fusion to track the origin of more agricultural products.</p></div>\",\"PeriodicalId\":9774,\"journal\":{\"name\":\"Chemometrics and Intelligent Laboratory Systems\",\"volume\":\"252 \",\"pages\":\"Article 105190\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemometrics and Intelligent Laboratory Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169743924001308\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924001308","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Tracing the origin of isatidis radix based on multivariate data fusion combined with DBN classification algorithm
In this study, multidimensional characterization data such as chromaticity value, texture and compositional content of Isatidis Radix from different regions (Anhui; Hubei; Shaanxi; Xinjiang) were collected. By multivariate statistical analysis, 44 characterization factors (VIP >1, P < 0.05) were selected to distinguish the origin of Isatidis Radix. In addition, a unique artificial intelligence algorithm was created and optimized by merging 44 characterization factors with the deep belief network (DBN) classification algorithm. Compared with the traditional discriminant analysis method, the accuracy of this new method was significantly improved, and the discrimination rate of Isatidis Radix origin reached 100 %, and the traceability accuracy of Isatidis Radix also reached 100 %. This study supports the development of intelligent algorithms based on data fusion to track the origin of more agricultural products.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.