{"title":"部署基于网络的 YOLO,用于 CT 扫描肾结石检测","authors":"Adnin Ramadhani, Abu Salam","doi":"10.33395/sinkron.v8i3.13744","DOIUrl":null,"url":null,"abstract":"This research aims to develop a kidney stone object detection system using machine learning techniques like YOLO and object detection, integrated into a Flask-based web interface to support early diagnosis by medical professionals. The trained model demonstrates strong pattern learning capabilities. Evaluation of the public dataset model reveals an average mean Average Precision (mAP) of 0.9698 for 'kidney stone' labels. This detection model exhibits high performance with an accuracy rate of 96.33%, precision of 96.98%, recall of 99.23%, and an F1-score of 98.1%. Clinical data evaluation shows that the YOLOv5-based detection system performs exceptionally well, with an average mAP of 0.9571, accuracy of 93.06%, precision of 95.71%, recall of 97.1%, and F1-score of 96.49%, indicating the model's capability to detect kidney stones with high precision and accuracy. Thus, both the evaluation on the public dataset and clinical dataset performance support accurate diagnosis processes and further treatment planning. Moreover, this research advances to the stage where the detection model can be directly utilized through implementation via Flask web deployment.","PeriodicalId":34046,"journal":{"name":"Sinkron","volume":"52 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deployment of Web-Based YOLO for CT Scan Kidney Stone Detection\",\"authors\":\"Adnin Ramadhani, Abu Salam\",\"doi\":\"10.33395/sinkron.v8i3.13744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aims to develop a kidney stone object detection system using machine learning techniques like YOLO and object detection, integrated into a Flask-based web interface to support early diagnosis by medical professionals. The trained model demonstrates strong pattern learning capabilities. Evaluation of the public dataset model reveals an average mean Average Precision (mAP) of 0.9698 for 'kidney stone' labels. This detection model exhibits high performance with an accuracy rate of 96.33%, precision of 96.98%, recall of 99.23%, and an F1-score of 98.1%. Clinical data evaluation shows that the YOLOv5-based detection system performs exceptionally well, with an average mAP of 0.9571, accuracy of 93.06%, precision of 95.71%, recall of 97.1%, and F1-score of 96.49%, indicating the model's capability to detect kidney stones with high precision and accuracy. Thus, both the evaluation on the public dataset and clinical dataset performance support accurate diagnosis processes and further treatment planning. Moreover, this research advances to the stage where the detection model can be directly utilized through implementation via Flask web deployment.\",\"PeriodicalId\":34046,\"journal\":{\"name\":\"Sinkron\",\"volume\":\"52 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sinkron\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33395/sinkron.v8i3.13744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sinkron","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33395/sinkron.v8i3.13744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deployment of Web-Based YOLO for CT Scan Kidney Stone Detection
This research aims to develop a kidney stone object detection system using machine learning techniques like YOLO and object detection, integrated into a Flask-based web interface to support early diagnosis by medical professionals. The trained model demonstrates strong pattern learning capabilities. Evaluation of the public dataset model reveals an average mean Average Precision (mAP) of 0.9698 for 'kidney stone' labels. This detection model exhibits high performance with an accuracy rate of 96.33%, precision of 96.98%, recall of 99.23%, and an F1-score of 98.1%. Clinical data evaluation shows that the YOLOv5-based detection system performs exceptionally well, with an average mAP of 0.9571, accuracy of 93.06%, precision of 95.71%, recall of 97.1%, and F1-score of 96.49%, indicating the model's capability to detect kidney stones with high precision and accuracy. Thus, both the evaluation on the public dataset and clinical dataset performance support accurate diagnosis processes and further treatment planning. Moreover, this research advances to the stage where the detection model can be directly utilized through implementation via Flask web deployment.