利用自适应兴趣区和混合处理方法开发带有远程血压计的非接触式人体生命体征监测设备

Dessy Novita , Fajar Wira Adikusuma , Nanang Rohadi , Bambang Mukti Wibawa , Agus Trisanto , Irma Ruslina Defi , Sherllina Rizqi Fauziah
{"title":"利用自适应兴趣区和混合处理方法开发带有远程血压计的非接触式人体生命体征监测设备","authors":"Dessy Novita ,&nbsp;Fajar Wira Adikusuma ,&nbsp;Nanang Rohadi ,&nbsp;Bambang Mukti Wibawa ,&nbsp;Agus Trisanto ,&nbsp;Irma Ruslina Defi ,&nbsp;Sherllina Rizqi Fauziah","doi":"10.1016/j.ibmed.2024.100160","DOIUrl":null,"url":null,"abstract":"<div><p>Vital sign assessment is an examination that indicates changes in health. Direct contact during vital signs assessment can increase the risk of disease transmission. This research aimed to develop a contactless vital sign monitoring prototype that includes heart rate, respiratory rate, blood pressure, and oxygen saturation using a digital camera based on remote photoplethysmography with an adaptive region of interest. The adaptive region-of-interest method uses face detection and skin segmentation to generate red-green-blue signals, taking only the skin pixels of the patients while also minimising the effect of motion artefacts. The hybrid processing method combines several vital sign extraction methods to filter external irrelevant factors and produce heart rate, respiratory rate, blood pressure, and blood oxygen saturation values. In addition, the prototype was tested on 50 participants using standard vital sign assessment tools for comparison. The technical specification test of the prototype concluded that the optimal distance of this prototype was up to 2 m with a processing time of 2 s for every 1-s video. The vital signs results were presented using Bland-Altman, which showed that although the Bland-Altman plots revealed a substantial variance in the limits of agreement (±15–20 mmHg for blood pressure, ±15–17 bpm for heart rate, ±4–6 bpm for respiratory rate, and ±1–3 % for blood oxygen saturation), the mean differences for all vital signs were small (±0.7–5 mmHg for blood pressure, ±0.4–0.6 bpm for heart rate, ±0.5–0.7 bpm for respiratory rate, ±0.4–0.6 for blood oxygen saturation) and most data points were within the limits. While further clinical studies are needed to assess its reliability in monitoring specific medical conditions, the prototype has shown an acceptable agreement in assessing vital signs compared to the conventional methods, making it feasible for further development into a medical device.</p></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"10 ","pages":"Article 100160"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666521224000279/pdfft?md5=9c2a08467d4ad925fd1a09dfb6f59ae1&pid=1-s2.0-S2666521224000279-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Development of contactless human vital signs monitoring device with remote-photoplethysmography using adaptive region-of-interest and hybrid processing methods\",\"authors\":\"Dessy Novita ,&nbsp;Fajar Wira Adikusuma ,&nbsp;Nanang Rohadi ,&nbsp;Bambang Mukti Wibawa ,&nbsp;Agus Trisanto ,&nbsp;Irma Ruslina Defi ,&nbsp;Sherllina Rizqi Fauziah\",\"doi\":\"10.1016/j.ibmed.2024.100160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vital sign assessment is an examination that indicates changes in health. Direct contact during vital signs assessment can increase the risk of disease transmission. This research aimed to develop a contactless vital sign monitoring prototype that includes heart rate, respiratory rate, blood pressure, and oxygen saturation using a digital camera based on remote photoplethysmography with an adaptive region of interest. The adaptive region-of-interest method uses face detection and skin segmentation to generate red-green-blue signals, taking only the skin pixels of the patients while also minimising the effect of motion artefacts. The hybrid processing method combines several vital sign extraction methods to filter external irrelevant factors and produce heart rate, respiratory rate, blood pressure, and blood oxygen saturation values. In addition, the prototype was tested on 50 participants using standard vital sign assessment tools for comparison. The technical specification test of the prototype concluded that the optimal distance of this prototype was up to 2 m with a processing time of 2 s for every 1-s video. The vital signs results were presented using Bland-Altman, which showed that although the Bland-Altman plots revealed a substantial variance in the limits of agreement (±15–20 mmHg for blood pressure, ±15–17 bpm for heart rate, ±4–6 bpm for respiratory rate, and ±1–3 % for blood oxygen saturation), the mean differences for all vital signs were small (±0.7–5 mmHg for blood pressure, ±0.4–0.6 bpm for heart rate, ±0.5–0.7 bpm for respiratory rate, ±0.4–0.6 for blood oxygen saturation) and most data points were within the limits. While further clinical studies are needed to assess its reliability in monitoring specific medical conditions, the prototype has shown an acceptable agreement in assessing vital signs compared to the conventional methods, making it feasible for further development into a medical device.</p></div>\",\"PeriodicalId\":73399,\"journal\":{\"name\":\"Intelligence-based medicine\",\"volume\":\"10 \",\"pages\":\"Article 100160\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666521224000279/pdfft?md5=9c2a08467d4ad925fd1a09dfb6f59ae1&pid=1-s2.0-S2666521224000279-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligence-based medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666521224000279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521224000279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生命体征评估是一种显示健康变化的检查。生命体征评估过程中的直接接触会增加疾病传播的风险。本研究旨在开发一种非接触式生命体征监测原型,它包括心率、呼吸频率、血压和血氧饱和度,使用的数码相机基于自适应兴趣区域的远程光压计。自适应兴趣区方法使用人脸检测和皮肤分割来生成红绿蓝信号,只采集病人的皮肤像素,同时将运动伪影的影响降至最低。混合处理方法结合了多种生命体征提取方法,以过滤外部无关因素,并生成心率、呼吸频率、血压和血氧饱和度值。此外,还使用标准生命体征评估工具对 50 名参与者进行了原型测试,以进行比较。原型的技术规格测试结果表明,该原型的最佳使用距离为 2 米,每 1 秒视频的处理时间为 2 秒。生命体征结果使用布兰-阿尔特曼(Bland-Altman)图显示,虽然布兰-阿尔特曼图显示出一致性极限的巨大差异(血压为 ±15-20 mmHg,心率为 ±15-17 bpm,呼吸频率为 ±4-6 bpm,血氧饱和度为 ±1-3%),但所有生命体征的平均差异都很小(血压为 ±0.7-5 mmHg,心率为 ±15-17bpm,呼吸频率为 ±4-6 bpm,血氧饱和度为 ±1-3%)。7-5毫米汞柱,心率为±0.4-0.6 bpm,呼吸频率为±0.5-0.7 bpm,血氧饱和度为±0.4-0.6),大多数数据点都在限值范围内。虽然还需要进一步的临床研究来评估其在监测特定医疗状况方面的可靠性,但与传统方法相比,该原型在评估生命体征方面表现出了可接受的一致性,因此将其进一步开发成医疗设备是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of contactless human vital signs monitoring device with remote-photoplethysmography using adaptive region-of-interest and hybrid processing methods

Vital sign assessment is an examination that indicates changes in health. Direct contact during vital signs assessment can increase the risk of disease transmission. This research aimed to develop a contactless vital sign monitoring prototype that includes heart rate, respiratory rate, blood pressure, and oxygen saturation using a digital camera based on remote photoplethysmography with an adaptive region of interest. The adaptive region-of-interest method uses face detection and skin segmentation to generate red-green-blue signals, taking only the skin pixels of the patients while also minimising the effect of motion artefacts. The hybrid processing method combines several vital sign extraction methods to filter external irrelevant factors and produce heart rate, respiratory rate, blood pressure, and blood oxygen saturation values. In addition, the prototype was tested on 50 participants using standard vital sign assessment tools for comparison. The technical specification test of the prototype concluded that the optimal distance of this prototype was up to 2 m with a processing time of 2 s for every 1-s video. The vital signs results were presented using Bland-Altman, which showed that although the Bland-Altman plots revealed a substantial variance in the limits of agreement (±15–20 mmHg for blood pressure, ±15–17 bpm for heart rate, ±4–6 bpm for respiratory rate, and ±1–3 % for blood oxygen saturation), the mean differences for all vital signs were small (±0.7–5 mmHg for blood pressure, ±0.4–0.6 bpm for heart rate, ±0.5–0.7 bpm for respiratory rate, ±0.4–0.6 for blood oxygen saturation) and most data points were within the limits. While further clinical studies are needed to assess its reliability in monitoring specific medical conditions, the prototype has shown an acceptable agreement in assessing vital signs compared to the conventional methods, making it feasible for further development into a medical device.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
期刊最新文献
Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Automatic characterization of cerebral MRI images for the detection of autism spectrum disorders DOTnet 2.0: Deep learning network for diffuse optical tomography image reconstruction Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Clustering polycystic ovary syndrome laboratory results extracted from a large internet forum with machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1