基于嵌段共聚物 PBI 膜与强吸酸 Py-PBI 膜段实现高电池性能

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of Membrane Science Pub Date : 2024-07-20 DOI:10.1016/j.memsci.2024.123111
{"title":"基于嵌段共聚物 PBI 膜与强吸酸 Py-PBI 膜段实现高电池性能","authors":"","doi":"10.1016/j.memsci.2024.123111","DOIUrl":null,"url":null,"abstract":"<div><p>Block copolymers show great promise as low-temperature proton exchange membranes (PEMs). However, their potential as high-temperature PEMs has been less explored. In this study, we synthesized a series of segmented block copolymers of polybenzimidazole (PBI), consisting of strongly acid-absorbing Py-PBI segments and fluorine-containing 6FPBI segments, which exhibited significant microphase-separated structures. To counteract the \"plasticization effect\" of phosphoric acid (PA) under high acid doping level (ADL), which can compromise the mechanical strength of PEMs, 3-(2,3-epoxypropyl) propyltrimethoxysilane (KH560) was introduced as a crosslinking agent to strike a balance between the ADL and the mechanical properties. The 5 % KH560–6F<sub>0.72</sub>Py<sub>0.28</sub>-PBI membrane, which features a molar ratio of 6FPBI to Py-PBI structural segments of 0.72:0.28, demonstrates the most obvious microphase separated structure, exhibiting high ADL (29.2) and proton conductivity (165.45 mS cm<sup>−1</sup> at 180 °C). The membrane electrode assembly (MEA) employing the segmented block copolymer membrane achieved a peak power density of 936.9 mW cm<sup>−2</sup> at 160 °C without humidification. This study highlights the significant enhancement of membrane performance achieved by constructing continuous microphase separated structures.</p></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":null,"pages":null},"PeriodicalIF":8.4000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving high cell performance based on block copolymer PBI membrane with strong acid absorbing Py-PBI segments\",\"authors\":\"\",\"doi\":\"10.1016/j.memsci.2024.123111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Block copolymers show great promise as low-temperature proton exchange membranes (PEMs). However, their potential as high-temperature PEMs has been less explored. In this study, we synthesized a series of segmented block copolymers of polybenzimidazole (PBI), consisting of strongly acid-absorbing Py-PBI segments and fluorine-containing 6FPBI segments, which exhibited significant microphase-separated structures. To counteract the \\\"plasticization effect\\\" of phosphoric acid (PA) under high acid doping level (ADL), which can compromise the mechanical strength of PEMs, 3-(2,3-epoxypropyl) propyltrimethoxysilane (KH560) was introduced as a crosslinking agent to strike a balance between the ADL and the mechanical properties. The 5 % KH560–6F<sub>0.72</sub>Py<sub>0.28</sub>-PBI membrane, which features a molar ratio of 6FPBI to Py-PBI structural segments of 0.72:0.28, demonstrates the most obvious microphase separated structure, exhibiting high ADL (29.2) and proton conductivity (165.45 mS cm<sup>−1</sup> at 180 °C). The membrane electrode assembly (MEA) employing the segmented block copolymer membrane achieved a peak power density of 936.9 mW cm<sup>−2</sup> at 160 °C without humidification. This study highlights the significant enhancement of membrane performance achieved by constructing continuous microphase separated structures.</p></div>\",\"PeriodicalId\":368,\"journal\":{\"name\":\"Journal of Membrane Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0376738824007051\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824007051","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

嵌段共聚物作为低温质子交换膜(PEM)显示出巨大的前景。然而,人们对它们作为高温质子交换膜的潜力探索较少。在这项研究中,我们合成了一系列聚苯并咪唑(PBI)嵌段共聚物,它们由强吸酸的 Py-PBI 嵌段和含氟的 6FPBI 嵌段组成,表现出明显的微相分离结构。在高酸掺杂水平(ADL)下,磷酸(PA)的 "塑化效应 "会损害 PEM 的机械强度,为了抵消这种效应,我们引入了 3-(2,3-环氧丙基)丙基三甲氧基硅烷(KH560)作为交联剂,以在 ADL 和机械性能之间取得平衡。5 % KH560-6F0.72Py0.28-PBI 膜的 6FPBI 与 Py-PBI 结构片段的摩尔比为 0.72:0.28,显示出最明显的微相分离结构,具有较高的 ADL(29.2)和质子电导率(180 °C 时为 165.45 mS cm-1)。采用分段嵌段共聚物膜的膜电极组件(MEA)在 160 °C 时达到了 936.9 mW cm-2 的峰值功率密度,且无需加湿。这项研究表明,通过构建连续的微相分离结构,膜的性能得到了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Achieving high cell performance based on block copolymer PBI membrane with strong acid absorbing Py-PBI segments

Block copolymers show great promise as low-temperature proton exchange membranes (PEMs). However, their potential as high-temperature PEMs has been less explored. In this study, we synthesized a series of segmented block copolymers of polybenzimidazole (PBI), consisting of strongly acid-absorbing Py-PBI segments and fluorine-containing 6FPBI segments, which exhibited significant microphase-separated structures. To counteract the "plasticization effect" of phosphoric acid (PA) under high acid doping level (ADL), which can compromise the mechanical strength of PEMs, 3-(2,3-epoxypropyl) propyltrimethoxysilane (KH560) was introduced as a crosslinking agent to strike a balance between the ADL and the mechanical properties. The 5 % KH560–6F0.72Py0.28-PBI membrane, which features a molar ratio of 6FPBI to Py-PBI structural segments of 0.72:0.28, demonstrates the most obvious microphase separated structure, exhibiting high ADL (29.2) and proton conductivity (165.45 mS cm−1 at 180 °C). The membrane electrode assembly (MEA) employing the segmented block copolymer membrane achieved a peak power density of 936.9 mW cm−2 at 160 °C without humidification. This study highlights the significant enhancement of membrane performance achieved by constructing continuous microphase separated structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
期刊最新文献
Editorial Board Preparation of high temperature proton exchange membranes with multilayered structures through alternate deposition of carbon dots@Metal organic framework and Sulfonated Poly(Ether Ketone) Exfoliated montmorillonite nanofillers role on the high performance and the permeability of polyamide nanofiltration membrane Sealing non-selective subnanochannels of chitosan acetate matrix of the membrane to valorise glycerol from biofuel waste Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1