Abdelaziz EL kharraz , Tarik El hafi , Soufiane Assouli , Abdelali Samiri , Abdelhadi Kotri , Omar Bajjou , Youssef Lachtioui
{"title":"单原子锆金属玻璃在压力变化和退火过程中的机械和结构特性:分子动力学研究","authors":"Abdelaziz EL kharraz , Tarik El hafi , Soufiane Assouli , Abdelali Samiri , Abdelhadi Kotri , Omar Bajjou , Youssef Lachtioui","doi":"10.1016/j.ssc.2024.115644","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this study is to investigate how different pressure levels and annealing times affect the local atomic structure and mechanical properties of pure zirconium metallic glasses. Using molecular dynamics simulations with the embedded atom method, we explored how these changes influence the material's inherent characteristics. Analysis of the radial distribution function, coordination number, and Voronoi tessellation revealed a spectrum of structural arrangements in metallic glass formed across a pressure range of 0–70 GPa. Additionally, the glass transition temperature increased with increasing pressure, accompanied by reduced free volume. The annealing process, ranging from 0 to 5 ns on metallic glass synthesized under 0 GPa pressure, showed the coordination number's significance in achieving a glassy state. Regarding mechanical behavior, both elastic constants and moduli showed a progressive increase with rising pressure, while Young's modulus and hardness displayed enhanced values with longer annealing times.</p></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"392 ","pages":"Article 115644"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical and structural properties of monatomic zirconium metallic glass under pressure variations and annealing processes: A molecular dynamics study\",\"authors\":\"Abdelaziz EL kharraz , Tarik El hafi , Soufiane Assouli , Abdelali Samiri , Abdelhadi Kotri , Omar Bajjou , Youssef Lachtioui\",\"doi\":\"10.1016/j.ssc.2024.115644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this study is to investigate how different pressure levels and annealing times affect the local atomic structure and mechanical properties of pure zirconium metallic glasses. Using molecular dynamics simulations with the embedded atom method, we explored how these changes influence the material's inherent characteristics. Analysis of the radial distribution function, coordination number, and Voronoi tessellation revealed a spectrum of structural arrangements in metallic glass formed across a pressure range of 0–70 GPa. Additionally, the glass transition temperature increased with increasing pressure, accompanied by reduced free volume. The annealing process, ranging from 0 to 5 ns on metallic glass synthesized under 0 GPa pressure, showed the coordination number's significance in achieving a glassy state. Regarding mechanical behavior, both elastic constants and moduli showed a progressive increase with rising pressure, while Young's modulus and hardness displayed enhanced values with longer annealing times.</p></div>\",\"PeriodicalId\":430,\"journal\":{\"name\":\"Solid State Communications\",\"volume\":\"392 \",\"pages\":\"Article 115644\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038109824002217\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109824002217","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Mechanical and structural properties of monatomic zirconium metallic glass under pressure variations and annealing processes: A molecular dynamics study
The aim of this study is to investigate how different pressure levels and annealing times affect the local atomic structure and mechanical properties of pure zirconium metallic glasses. Using molecular dynamics simulations with the embedded atom method, we explored how these changes influence the material's inherent characteristics. Analysis of the radial distribution function, coordination number, and Voronoi tessellation revealed a spectrum of structural arrangements in metallic glass formed across a pressure range of 0–70 GPa. Additionally, the glass transition temperature increased with increasing pressure, accompanied by reduced free volume. The annealing process, ranging from 0 to 5 ns on metallic glass synthesized under 0 GPa pressure, showed the coordination number's significance in achieving a glassy state. Regarding mechanical behavior, both elastic constants and moduli showed a progressive increase with rising pressure, while Young's modulus and hardness displayed enhanced values with longer annealing times.
期刊介绍:
Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged.
A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions.
The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.