使用 Word2Vec 和最佳 Naïve Bayes 概率模型对社交媒体上的 Whoosh 用户情感进行分析

Muhammad Dinan Islamanda, Y. Sibaroni
{"title":"使用 Word2Vec 和最佳 Naïve Bayes 概率模型对社交媒体上的 Whoosh 用户情感进行分析","authors":"Muhammad Dinan Islamanda, Y. Sibaroni","doi":"10.33395/sinkron.v8i3.13742","DOIUrl":null,"url":null,"abstract":"By using the Twitter microblogging feature, users can post short tweets with limited characters that express their thoughts and opinions regarding a matter. The newest transportation in Indonesia, a high-speed train namely Whoosh is one of the things that Twitter users responded to. This latest transportation has led to the emergence of opinions from the Indonesian people which are shared publicly in various media, one of which is social media. Therefore, to make it easier for business people or companies to understand public opinion regarding service improvements in the future, sentiment analysis on social media is needed to determine user opinions regarding high-speed train transportation. In this research, sentiment analysis of high-speed train users will be carried out on social media Twitter using Word2Vec and Naïve Bayes as classification methods. In this research, a comparison of Naïve Bayes models will also be carried out to find out the best Naïve Bayes method opportunity model. Simultaneously, the Word2vec feature extraction method was chosen because Word2Vec can be used to improve model performance and increase the accuracy of sentiment classification. This research found that the Word2Vec Skip-Gram model outperformed the Word2Vec CBOW model. The best model obtained was the use of the Gaussian Naïve Bayes and Word2Vec Skip-Gram models with an accuracy score of 77.18%, precision 70.35%, recall 76.09%, and f1-score 73.10%.","PeriodicalId":34046,"journal":{"name":"Sinkron","volume":"53 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Whoosh User Sentiment Analysis on Social Media Using Word2Vec and the Best Naïve Bayes Probability Model\",\"authors\":\"Muhammad Dinan Islamanda, Y. Sibaroni\",\"doi\":\"10.33395/sinkron.v8i3.13742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By using the Twitter microblogging feature, users can post short tweets with limited characters that express their thoughts and opinions regarding a matter. The newest transportation in Indonesia, a high-speed train namely Whoosh is one of the things that Twitter users responded to. This latest transportation has led to the emergence of opinions from the Indonesian people which are shared publicly in various media, one of which is social media. Therefore, to make it easier for business people or companies to understand public opinion regarding service improvements in the future, sentiment analysis on social media is needed to determine user opinions regarding high-speed train transportation. In this research, sentiment analysis of high-speed train users will be carried out on social media Twitter using Word2Vec and Naïve Bayes as classification methods. In this research, a comparison of Naïve Bayes models will also be carried out to find out the best Naïve Bayes method opportunity model. Simultaneously, the Word2vec feature extraction method was chosen because Word2Vec can be used to improve model performance and increase the accuracy of sentiment classification. This research found that the Word2Vec Skip-Gram model outperformed the Word2Vec CBOW model. The best model obtained was the use of the Gaussian Naïve Bayes and Word2Vec Skip-Gram models with an accuracy score of 77.18%, precision 70.35%, recall 76.09%, and f1-score 73.10%.\",\"PeriodicalId\":34046,\"journal\":{\"name\":\"Sinkron\",\"volume\":\"53 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sinkron\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33395/sinkron.v8i3.13742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sinkron","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33395/sinkron.v8i3.13742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过使用 Twitter 微博客功能,用户可以发布字数有限的短微博,表达自己对某件事情的想法和意见。印尼最新的交通工具--高速列车 "嗖嗖"(Whowosh)就是推特用户的回应之一。这种最新的交通工具引发了印尼人民的意见,并在各种媒体上公开分享,社交媒体就是其中之一。因此,为了方便商业人士或公司了解公众对未来服务改进的意见,需要对社交媒体进行情感分析,以确定用户对高速列车交通的意见。本研究将使用 Word2Vec 和 Naïve Bayes 作为分类方法,在社交媒体 Twitter 上对高速列车用户进行情感分析。本研究还将对 Naïve Bayes 模型进行比较,以找出最佳的 Naïve Bayes 方法机会模型。同时,选择 Word2vec 特征提取方法是因为 Word2Vec 可以用来改善模型性能,提高情感分类的准确性。研究发现,Word2Vec Skip-Gram 模型的性能优于 Word2Vec CBOW 模型。使用高斯奈夫贝叶斯和 Word2Vec Skip-Gram 模型得到的最佳模型准确率为 77.18%,精确率为 70.35%,召回率为 76.09%,f1-分数为 73.10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Whoosh User Sentiment Analysis on Social Media Using Word2Vec and the Best Naïve Bayes Probability Model
By using the Twitter microblogging feature, users can post short tweets with limited characters that express their thoughts and opinions regarding a matter. The newest transportation in Indonesia, a high-speed train namely Whoosh is one of the things that Twitter users responded to. This latest transportation has led to the emergence of opinions from the Indonesian people which are shared publicly in various media, one of which is social media. Therefore, to make it easier for business people or companies to understand public opinion regarding service improvements in the future, sentiment analysis on social media is needed to determine user opinions regarding high-speed train transportation. In this research, sentiment analysis of high-speed train users will be carried out on social media Twitter using Word2Vec and Naïve Bayes as classification methods. In this research, a comparison of Naïve Bayes models will also be carried out to find out the best Naïve Bayes method opportunity model. Simultaneously, the Word2vec feature extraction method was chosen because Word2Vec can be used to improve model performance and increase the accuracy of sentiment classification. This research found that the Word2Vec Skip-Gram model outperformed the Word2Vec CBOW model. The best model obtained was the use of the Gaussian Naïve Bayes and Word2Vec Skip-Gram models with an accuracy score of 77.18%, precision 70.35%, recall 76.09%, and f1-score 73.10%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
204
审稿时长
4 weeks
期刊最新文献
Sales Trend Analysis With Machine Learning Linear Regression Algorithm Method Classification of Breast Cancer with Transfer Learning on Convolutional Neural Network Models Comparison Of Exponesial Smoothing With Linear Regression Predicting Amount Of Goods Sales Decision Support System Using the TOPSIS Method in New Teacher Selection A CNN Model for ODOL Truck Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1