去除稻草和稻根对水稻不同生长阶段土壤镉供应量和镉积累的影响

IF 6.7 2区 环境科学与生态学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Environmental Technology & Innovation Pub Date : 2024-07-26 DOI:10.1016/j.eti.2024.103768
Chang Li , Zi-Yu Wang , Hang Zhou , Yao-Lin Wen , Peng Zeng , Jiao-Feng Gu , Lu Hu , Hai-Wei Yuan , Bo-Han Liao
{"title":"去除稻草和稻根对水稻不同生长阶段土壤镉供应量和镉积累的影响","authors":"Chang Li ,&nbsp;Zi-Yu Wang ,&nbsp;Hang Zhou ,&nbsp;Yao-Lin Wen ,&nbsp;Peng Zeng ,&nbsp;Jiao-Feng Gu ,&nbsp;Lu Hu ,&nbsp;Hai-Wei Yuan ,&nbsp;Bo-Han Liao","doi":"10.1016/j.eti.2024.103768","DOIUrl":null,"url":null,"abstract":"<div><p>It is argument on whether straw removal present a safer alternative compared to straw return or not where in paddy fields contaminated with cadmium (Cd). The objective of this study was to evaluate the impacts of varying levels of straw and roots removal on Cd uptake and accumulation, as well as on the growth of rice, Cd availability of soil at different growth stages, and the safety and nutritional value of brown rice were subject to assessment as well. A field experiment was conducted wherein rice straw and roots were returned into the paddy field, serving as the control group (CK). The findings revealed that the removal of straw and roots resulted in a decline in the availability of Cd in soil and the accumulation and uptake of Cd by rice plant. At the maturation stage of rice, the soil available Cd content and brown rice Cd content was significantly reduced by 40.39% and24.79 % under the treatment where 100 % of rice straw and roots were removed. Moreover, there was a significant decline of 66.54 % and 76.35 % in dissolved organic carbon (DOC) and Cd concentrations respectively within soil pore water. This suggests that one crucial factor contributing to decreased Cd accumulation is the diminished complexation between DOC and Cd resulting from straw removal treatments. The removal of straw and roots had minimal impact on the nutritional components of brown rice, including essential amino acids. After the removal of straw and roots from the field, there was a reduction in hazard quotient (HQ) for rice consumers of varying genders and ages in the region by 17.71–24.95 %, leading to a decrease in local ecological risk level from medium to slight. Therefore, the implementation of strategies such as removing straw and roots could potentially lead to successful outcomes in reducing rice Cd uptake in paddy fields contaminated with this metallic element.</p></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"36 ","pages":"Article 103768"},"PeriodicalIF":6.7000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S235218642400244X/pdfft?md5=c4bac660cee6afa25c0a65239f372e2b&pid=1-s2.0-S235218642400244X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effects of straw and roots removal on soil Cd availability and Cd accumulation in rice at different growth stages\",\"authors\":\"Chang Li ,&nbsp;Zi-Yu Wang ,&nbsp;Hang Zhou ,&nbsp;Yao-Lin Wen ,&nbsp;Peng Zeng ,&nbsp;Jiao-Feng Gu ,&nbsp;Lu Hu ,&nbsp;Hai-Wei Yuan ,&nbsp;Bo-Han Liao\",\"doi\":\"10.1016/j.eti.2024.103768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is argument on whether straw removal present a safer alternative compared to straw return or not where in paddy fields contaminated with cadmium (Cd). The objective of this study was to evaluate the impacts of varying levels of straw and roots removal on Cd uptake and accumulation, as well as on the growth of rice, Cd availability of soil at different growth stages, and the safety and nutritional value of brown rice were subject to assessment as well. A field experiment was conducted wherein rice straw and roots were returned into the paddy field, serving as the control group (CK). The findings revealed that the removal of straw and roots resulted in a decline in the availability of Cd in soil and the accumulation and uptake of Cd by rice plant. At the maturation stage of rice, the soil available Cd content and brown rice Cd content was significantly reduced by 40.39% and24.79 % under the treatment where 100 % of rice straw and roots were removed. Moreover, there was a significant decline of 66.54 % and 76.35 % in dissolved organic carbon (DOC) and Cd concentrations respectively within soil pore water. This suggests that one crucial factor contributing to decreased Cd accumulation is the diminished complexation between DOC and Cd resulting from straw removal treatments. The removal of straw and roots had minimal impact on the nutritional components of brown rice, including essential amino acids. After the removal of straw and roots from the field, there was a reduction in hazard quotient (HQ) for rice consumers of varying genders and ages in the region by 17.71–24.95 %, leading to a decrease in local ecological risk level from medium to slight. Therefore, the implementation of strategies such as removing straw and roots could potentially lead to successful outcomes in reducing rice Cd uptake in paddy fields contaminated with this metallic element.</p></div>\",\"PeriodicalId\":11725,\"journal\":{\"name\":\"Environmental Technology & Innovation\",\"volume\":\"36 \",\"pages\":\"Article 103768\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S235218642400244X/pdfft?md5=c4bac660cee6afa25c0a65239f372e2b&pid=1-s2.0-S235218642400244X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology & Innovation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S235218642400244X\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology & Innovation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235218642400244X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在受到镉(Cd)污染的稻田中,稻草清除是否比稻草还田更安全,目前还存在争议。本研究的目的是评估不同程度的稻草和稻根清除对镉吸收和积累的影响,以及对水稻生长、不同生长阶段土壤中镉的可用性、糙米的安全性和营养价值的影响。在田间试验中,稻草和稻根被送回稻田,作为对照组(CK)。研究结果表明,清除稻草和稻根会导致土壤中镉的供应量下降,以及水稻植株对镉的积累和吸收。在水稻成熟期,100%去除稻草和稻根的处理中,土壤可利用镉含量和糙米镉含量分别显著降低了 40.39% 和 24.79%。此外,土壤孔隙水中的溶解有机碳 (DOC) 和镉浓度也分别大幅下降了 66.54 % 和 76.35 %。这表明,导致镉积累减少的一个关键因素是去除秸秆后 DOC 和镉之间的复合物减少了。去除稻草和根对糙米的营养成分(包括必需氨基酸)影响很小。从田间清除稻草和根茎后,该地区不同性别和年龄的水稻消费者的危害商数(HQ)降低了 17.71-24.95%,导致当地的生态风险等级从中度降低到轻度。因此,在受镉金属元素污染的稻田中,实施清除稻草和稻根等策略有可能成功减少水稻对镉的吸收。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of straw and roots removal on soil Cd availability and Cd accumulation in rice at different growth stages

It is argument on whether straw removal present a safer alternative compared to straw return or not where in paddy fields contaminated with cadmium (Cd). The objective of this study was to evaluate the impacts of varying levels of straw and roots removal on Cd uptake and accumulation, as well as on the growth of rice, Cd availability of soil at different growth stages, and the safety and nutritional value of brown rice were subject to assessment as well. A field experiment was conducted wherein rice straw and roots were returned into the paddy field, serving as the control group (CK). The findings revealed that the removal of straw and roots resulted in a decline in the availability of Cd in soil and the accumulation and uptake of Cd by rice plant. At the maturation stage of rice, the soil available Cd content and brown rice Cd content was significantly reduced by 40.39% and24.79 % under the treatment where 100 % of rice straw and roots were removed. Moreover, there was a significant decline of 66.54 % and 76.35 % in dissolved organic carbon (DOC) and Cd concentrations respectively within soil pore water. This suggests that one crucial factor contributing to decreased Cd accumulation is the diminished complexation between DOC and Cd resulting from straw removal treatments. The removal of straw and roots had minimal impact on the nutritional components of brown rice, including essential amino acids. After the removal of straw and roots from the field, there was a reduction in hazard quotient (HQ) for rice consumers of varying genders and ages in the region by 17.71–24.95 %, leading to a decrease in local ecological risk level from medium to slight. Therefore, the implementation of strategies such as removing straw and roots could potentially lead to successful outcomes in reducing rice Cd uptake in paddy fields contaminated with this metallic element.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Technology & Innovation
Environmental Technology & Innovation Environmental Science-General Environmental Science
CiteScore
14.00
自引率
4.20%
发文量
435
审稿时长
74 days
期刊介绍: Environmental Technology & Innovation adopts a challenge-oriented approach to solutions by integrating natural sciences to promote a sustainable future. The journal aims to foster the creation and development of innovative products, technologies, and ideas that enhance the environment, with impacts across soil, air, water, and food in rural and urban areas. As a platform for disseminating scientific evidence for environmental protection and sustainable development, the journal emphasizes fundamental science, methodologies, tools, techniques, and policy considerations. It emphasizes the importance of science and technology in environmental benefits, including smarter, cleaner technologies for environmental protection, more efficient resource processing methods, and the evidence supporting their effectiveness.
期刊最新文献
Remediation of Pb and Cd contaminated sediments by wheat straw biochar and microbial community analysis The ammonium transporter AmtB is dispensable for the uptake of ammonium in the phototrophic diazotroph Rhodopseudomonas palustris An innovative sustainable solution: Recycling shield-discharge waste soil as fine aggregate to produce eco-friendly geopolymer-based flowable backfill materials Assessing subgroup differences and underlying causes of ozone-associated mortality burden in China using multi-source data Synchronously improving intracellular electron transfer in electron-donating bacteria and electron-accepting methanogens for facilitating direct interspecies electron transfer during anaerobic digestion of kitchen wastes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1