通过微生物诱导方解石沉淀控制盾构隧道渗流的实验研究

IF 8.2 1区 工程技术 Q1 ENGINEERING, CIVIL Underground Space Pub Date : 2024-07-22 DOI:10.1016/j.undsp.2024.03.007
Shuai Zhao , Shi-Fan Wu , Dong-Ming Zhang , Hong-Wei Huang , Jian Chu
{"title":"通过微生物诱导方解石沉淀控制盾构隧道渗流的实验研究","authors":"Shuai Zhao ,&nbsp;Shi-Fan Wu ,&nbsp;Dong-Ming Zhang ,&nbsp;Hong-Wei Huang ,&nbsp;Jian Chu","doi":"10.1016/j.undsp.2024.03.007","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the potential use of microbially induced calcite precipitation (MICP) to prevent seepage in shield tunnels with the aim of decarbonizing tunnel engineering. An apparatus was developed to conduct scale model tests to evaluate the effectiveness of using MICP for shield tunnel seepage control. To understand the MICP process and its induced change in seepage flow rate, a series of 1-<em>g</em> physical model tests were conducted using the designed apparatus to investigate the effect of injection methods, grouting pressure, and calcium carbonate (CaCO<sub>3</sub>) content produced as well as its distribution on the reduction of seepage flow rate for thephysical tunnel model with different backfills behind its linings. The variation law of the pore pressure near grouting hole of the tunnel segment was also revealed. Results indicated that when the amount of CaCO<sub>3</sub> precipitation in sand-grout mixtures was 10.53% and 10.12%, water seepage flow rate for thephysical tunnel modelwith Fujian- and coarse-sand-grout backfill respectively reduced by 94.3% and 73.8% of their respective initial values, and S-wave velocity increased by 89.6% and 84.9% for Fujian- and coarse-sand-grout mixture, respectively. The grouting pressure needed to be controlled within a certain range to prevent the unstable CaCO<sub>3</sub> precipitates from being washed away. The testing results also showed that the one-phase injection method was more effective in controlling seepage water into a shield tunnel. Based on the findings of the scale model tests, some vital considerations and suggestions were presented on the use of MICP approaches for shield tunnel seepage control.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"21 ","pages":"Pages 65-80"},"PeriodicalIF":8.2000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on shield tunnel seepage control via microbially induced calcite precipitation\",\"authors\":\"Shuai Zhao ,&nbsp;Shi-Fan Wu ,&nbsp;Dong-Ming Zhang ,&nbsp;Hong-Wei Huang ,&nbsp;Jian Chu\",\"doi\":\"10.1016/j.undsp.2024.03.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigated the potential use of microbially induced calcite precipitation (MICP) to prevent seepage in shield tunnels with the aim of decarbonizing tunnel engineering. An apparatus was developed to conduct scale model tests to evaluate the effectiveness of using MICP for shield tunnel seepage control. To understand the MICP process and its induced change in seepage flow rate, a series of 1-<em>g</em> physical model tests were conducted using the designed apparatus to investigate the effect of injection methods, grouting pressure, and calcium carbonate (CaCO<sub>3</sub>) content produced as well as its distribution on the reduction of seepage flow rate for thephysical tunnel model with different backfills behind its linings. The variation law of the pore pressure near grouting hole of the tunnel segment was also revealed. Results indicated that when the amount of CaCO<sub>3</sub> precipitation in sand-grout mixtures was 10.53% and 10.12%, water seepage flow rate for thephysical tunnel modelwith Fujian- and coarse-sand-grout backfill respectively reduced by 94.3% and 73.8% of their respective initial values, and S-wave velocity increased by 89.6% and 84.9% for Fujian- and coarse-sand-grout mixture, respectively. The grouting pressure needed to be controlled within a certain range to prevent the unstable CaCO<sub>3</sub> precipitates from being washed away. The testing results also showed that the one-phase injection method was more effective in controlling seepage water into a shield tunnel. Based on the findings of the scale model tests, some vital considerations and suggestions were presented on the use of MICP approaches for shield tunnel seepage control.</div></div>\",\"PeriodicalId\":48505,\"journal\":{\"name\":\"Underground Space\",\"volume\":\"21 \",\"pages\":\"Pages 65-80\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Underground Space\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2467967424000758\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467967424000758","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了利用微生物诱导方解石沉淀(MICP)防止盾构隧道渗水的可能性,旨在实现隧道工程脱碳。我们开发了一种设备,用于进行规模模型试验,以评估使用 MICP 控制盾构隧道渗流的有效性。为了解 MICP 过程及其引起的渗流率变化,使用所设计的仪器进行了一系列 1-g 物理模型试验,以研究注浆方法、注浆压力、所产生的碳酸钙(CaCO3)含量及其分布对减少不同衬砌后回填土的物理隧道模型渗流率的影响。此外,还揭示了隧道段灌浆孔附近孔隙压力的变化规律。结果表明,当砂-灌浆料混合物中 CaCO3 的析出量分别为 10.53% 和 10.12% 时,采用闽砂和粗砂灌浆料回填的物理隧道模型的渗水流速分别比初始值降低了 94.3% 和 73.8%,闽砂和粗砂灌浆料混合物的 S 波速度分别提高了 89.6% 和 84.9%。灌浆压力需要控制在一定范围内,以防止不稳定的 CaCO3 沉淀被冲走。测试结果还表明,单相注浆法在控制盾构隧道渗水方面更为有效。根据比例模型试验的结果,提出了使用 MICP 方法控制盾构隧道渗水的一些重要考虑因素和建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental study on shield tunnel seepage control via microbially induced calcite precipitation
This study investigated the potential use of microbially induced calcite precipitation (MICP) to prevent seepage in shield tunnels with the aim of decarbonizing tunnel engineering. An apparatus was developed to conduct scale model tests to evaluate the effectiveness of using MICP for shield tunnel seepage control. To understand the MICP process and its induced change in seepage flow rate, a series of 1-g physical model tests were conducted using the designed apparatus to investigate the effect of injection methods, grouting pressure, and calcium carbonate (CaCO3) content produced as well as its distribution on the reduction of seepage flow rate for thephysical tunnel model with different backfills behind its linings. The variation law of the pore pressure near grouting hole of the tunnel segment was also revealed. Results indicated that when the amount of CaCO3 precipitation in sand-grout mixtures was 10.53% and 10.12%, water seepage flow rate for thephysical tunnel modelwith Fujian- and coarse-sand-grout backfill respectively reduced by 94.3% and 73.8% of their respective initial values, and S-wave velocity increased by 89.6% and 84.9% for Fujian- and coarse-sand-grout mixture, respectively. The grouting pressure needed to be controlled within a certain range to prevent the unstable CaCO3 precipitates from being washed away. The testing results also showed that the one-phase injection method was more effective in controlling seepage water into a shield tunnel. Based on the findings of the scale model tests, some vital considerations and suggestions were presented on the use of MICP approaches for shield tunnel seepage control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Underground Space
Underground Space ENGINEERING, CIVIL-
CiteScore
10.20
自引率
14.10%
发文量
71
审稿时长
63 days
期刊介绍: Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.
期刊最新文献
Analysis of hydraulic breakdown and seepage of tail sealing system in shield tunnel machines Characteristics of deformation and defect of shield tunnel in coastal structured soil in China Detecting soil mixing, grain size distribution, and clogging potential of tunnel excavation face by classification-regression algorithms using EPBM operational data Experimental study on mechanical behavior and countermeasures of mountain tunnels under strike-slip fault movement Numerical studies on the synergistic effects of smoke extraction and control performance by mechanical ventilation shafts during tunnel fires
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1