综合长非编码 RNA 和 mRNA 表达分析确定与抑郁症的恢复力和易感性以及抗抑郁药反应特别相关的分子

Qingzhong Wang , Huizhen Wang , Yogesh Dwivedi
{"title":"综合长非编码 RNA 和 mRNA 表达分析确定与抑郁症的恢复力和易感性以及抗抑郁药反应特别相关的分子","authors":"Qingzhong Wang ,&nbsp;Huizhen Wang ,&nbsp;Yogesh Dwivedi","doi":"10.1016/j.bpsgos.2024.100365","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Depression involves maladaptive processes impairing an individual’s ability to interface with the environment appropriately. Long noncoding RNAs (lncRNAs) are gaining traction for their role in higher-order brain functioning. Recently, we reported that lncRNA coexpression modules may underlie abnormal responses to stress in rats showing depression-like behavior. The current study explored the global expression regulation of lncRNAs and messenger RNAs (mRNAs) in the hippocampus of rats showing susceptibility (learned helplessness [LH]) or resiliency (non-LH) to depression and fluoxetine response to LH (LH+FLX).</p></div><div><h3>Methods</h3><p>Multiple comparison analysis was performed with an analysis of variance via the <em>aov</em> and <em>summary</em> function in the R platform to identify the differential expression of mRNAs and lncRNAs among LH, non-LH, tested control, and LH+FLX groups. Weighted gene coexpression network analysis was used to identify distinctive modules and pathways associated with each phenotype. A machine learning analysis was conducted to screen the critical target genes. Based on the combined analysis, the regulatory effects of lncRNAs on mRNA expression were explored.</p></div><div><h3>Results</h3><p>Multiple comparison analyses revealed differentially expressed mRNAs and lncRNAs with each phenotype. Integrated bioinformatics analysis identified novel transcripts, specific modules, and regulatory pairs of mRNA-lncRNA in each phenotype. In addition, the machine learning approach predicted lncRNA-regulated <em>Spp2</em> and <em>Olr25</em> genes in developing LH behavior, whereas joint analysis of mRNA-lncRNA pairs identified <em>Mboat7</em>, <em>Lmod1</em>, <em>I</em><em>l</em><em>18</em>, and <em>Rfx5</em> genes in depression-like behavior and <em>Adam6</em> and <em>Tpra1</em> in antidepressant response.</p></div><div><h3>Conclusions</h3><p>The study shows a novel role for lncRNAs in the development of specific depression phenotypes and in identifying newer targets for therapeutic development.</p></div>","PeriodicalId":72373,"journal":{"name":"Biological psychiatry global open science","volume":"4 6","pages":"Article 100365"},"PeriodicalIF":4.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667174324000788/pdfft?md5=c0a81ece017ac96029a09d5a6606085e&pid=1-s2.0-S2667174324000788-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Integrated Long Noncoding RNA and Messenger RNA Expression Analysis Identifies Molecules Specifically Associated With Resiliency and Susceptibility to Depression and Antidepressant Response\",\"authors\":\"Qingzhong Wang ,&nbsp;Huizhen Wang ,&nbsp;Yogesh Dwivedi\",\"doi\":\"10.1016/j.bpsgos.2024.100365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Depression involves maladaptive processes impairing an individual’s ability to interface with the environment appropriately. Long noncoding RNAs (lncRNAs) are gaining traction for their role in higher-order brain functioning. Recently, we reported that lncRNA coexpression modules may underlie abnormal responses to stress in rats showing depression-like behavior. The current study explored the global expression regulation of lncRNAs and messenger RNAs (mRNAs) in the hippocampus of rats showing susceptibility (learned helplessness [LH]) or resiliency (non-LH) to depression and fluoxetine response to LH (LH+FLX).</p></div><div><h3>Methods</h3><p>Multiple comparison analysis was performed with an analysis of variance via the <em>aov</em> and <em>summary</em> function in the R platform to identify the differential expression of mRNAs and lncRNAs among LH, non-LH, tested control, and LH+FLX groups. Weighted gene coexpression network analysis was used to identify distinctive modules and pathways associated with each phenotype. A machine learning analysis was conducted to screen the critical target genes. Based on the combined analysis, the regulatory effects of lncRNAs on mRNA expression were explored.</p></div><div><h3>Results</h3><p>Multiple comparison analyses revealed differentially expressed mRNAs and lncRNAs with each phenotype. Integrated bioinformatics analysis identified novel transcripts, specific modules, and regulatory pairs of mRNA-lncRNA in each phenotype. In addition, the machine learning approach predicted lncRNA-regulated <em>Spp2</em> and <em>Olr25</em> genes in developing LH behavior, whereas joint analysis of mRNA-lncRNA pairs identified <em>Mboat7</em>, <em>Lmod1</em>, <em>I</em><em>l</em><em>18</em>, and <em>Rfx5</em> genes in depression-like behavior and <em>Adam6</em> and <em>Tpra1</em> in antidepressant response.</p></div><div><h3>Conclusions</h3><p>The study shows a novel role for lncRNAs in the development of specific depression phenotypes and in identifying newer targets for therapeutic development.</p></div>\",\"PeriodicalId\":72373,\"journal\":{\"name\":\"Biological psychiatry global open science\",\"volume\":\"4 6\",\"pages\":\"Article 100365\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667174324000788/pdfft?md5=c0a81ece017ac96029a09d5a6606085e&pid=1-s2.0-S2667174324000788-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological psychiatry global open science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667174324000788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological psychiatry global open science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667174324000788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景抑郁症涉及不适应过程,损害了个体与环境适当互动的能力。长非编码 RNA(lncRNA)在高阶大脑功能中的作用越来越受到关注。最近,我们报道了lncRNA共表达模块可能是大鼠对压力的异常反应的基础,大鼠表现出类似抑郁症的行为。本研究探讨了对抑郁症易感性(习得性无助[LH])或复原性(非LH)以及氟西汀对LH(LH+FLX)反应的大鼠海马中lncRNA和信使RNA(mRNA)的全局表达调控。方法通过 R 平台中的 aov 和摘要函数进行多重比较分析,以确定 LH 组、非 LH 组、测试对照组和 LH+FLX 组之间 mRNA 和 lncRNA 的差异表达。加权基因共表达网络分析用于识别与每种表型相关的独特模块和通路。通过机器学习分析筛选出关键的靶基因。结果多重对比分析发现了与每种表型相关的不同表达的 mRNA 和 lncRNA。综合生物信息学分析确定了每种表型中的新转录本、特定模块以及 mRNA-lncRNA 的调控对。此外,机器学习方法预测了受 lncRNA 调控的 Spp2 和 Olr25 基因在 LH 行为发展中的作用,而 mRNA-lncRNA 对的联合分析则确定了 Mboat7、Lmod1、Il18 和 Rfx5 基因在抑郁样行为中的作用,以及 Adam6 和 Tpra1 在抗抑郁反应中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrated Long Noncoding RNA and Messenger RNA Expression Analysis Identifies Molecules Specifically Associated With Resiliency and Susceptibility to Depression and Antidepressant Response

Background

Depression involves maladaptive processes impairing an individual’s ability to interface with the environment appropriately. Long noncoding RNAs (lncRNAs) are gaining traction for their role in higher-order brain functioning. Recently, we reported that lncRNA coexpression modules may underlie abnormal responses to stress in rats showing depression-like behavior. The current study explored the global expression regulation of lncRNAs and messenger RNAs (mRNAs) in the hippocampus of rats showing susceptibility (learned helplessness [LH]) or resiliency (non-LH) to depression and fluoxetine response to LH (LH+FLX).

Methods

Multiple comparison analysis was performed with an analysis of variance via the aov and summary function in the R platform to identify the differential expression of mRNAs and lncRNAs among LH, non-LH, tested control, and LH+FLX groups. Weighted gene coexpression network analysis was used to identify distinctive modules and pathways associated with each phenotype. A machine learning analysis was conducted to screen the critical target genes. Based on the combined analysis, the regulatory effects of lncRNAs on mRNA expression were explored.

Results

Multiple comparison analyses revealed differentially expressed mRNAs and lncRNAs with each phenotype. Integrated bioinformatics analysis identified novel transcripts, specific modules, and regulatory pairs of mRNA-lncRNA in each phenotype. In addition, the machine learning approach predicted lncRNA-regulated Spp2 and Olr25 genes in developing LH behavior, whereas joint analysis of mRNA-lncRNA pairs identified Mboat7, Lmod1, Il18, and Rfx5 genes in depression-like behavior and Adam6 and Tpra1 in antidepressant response.

Conclusions

The study shows a novel role for lncRNAs in the development of specific depression phenotypes and in identifying newer targets for therapeutic development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological psychiatry global open science
Biological psychiatry global open science Psychiatry and Mental Health
CiteScore
4.00
自引率
0.00%
发文量
0
审稿时长
91 days
期刊最新文献
Pharmacological Enhancement of Adult Hippocampal Neurogenesis Improves Behavioral Pattern Separation in Young and Aged Male Mice. GABA/Glutamate Neuron Differentiation Imbalance and Increased AKT/mTOR Signaling in CNTNAP2-/- Cerebral Organoids. Table of Contents Editorial Board Page Subscribers Page
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1