Guangping Yang , Tianxiang Yang , Zhiguo Wang , Ke Wang , Mengmeng Zhang , Peter D. Lund , Sining Yun
{"title":"定向掺杂诱导界面取向,构建表面功能化肖特基结,协调水电解中的氧化还原反应","authors":"Guangping Yang , Tianxiang Yang , Zhiguo Wang , Ke Wang , Mengmeng Zhang , Peter D. Lund , Sining Yun","doi":"10.1016/j.apmate.2024.100224","DOIUrl":null,"url":null,"abstract":"<div><p>Tuning the surface properties of catalysts is an effective method for accelerating water electrolysis. Herein, we propose a directional doping and interfacial coupling strategy to design two surface-functionalized Schottky junction catalysts for coordinating the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Directional doping with B/S atoms endows amphiphilic g-C<sub>3</sub>N<sub>4</sub> with significant n-/p-type semiconductor properties. Further coupling with Fe<sub>3</sub>C modulates the energy band levels of B–C<sub>3</sub>N<sub>4</sub> and S–C<sub>3</sub>N<sub>4</sub>, thus resulting in functionalized Schottky junction catalysts with specific surface-adsorption properties. The space-charge region generated by the dual modulation induces a local “OH<sup>−</sup>- and H<sup>+</sup>-enriched” environment, thus selectively promoting the kinetic behavior of the OER/HER. Impressively, the designed B–C<sub>3</sub>N<sub>4</sub>@Fe<sub>3</sub>C||S–C<sub>3</sub>N<sub>4</sub>@Fe<sub>3</sub>C pair requires only a low voltage of 1.52 V to achieve efficient water electrolysis at 10 mA cm<sup>−2</sup>. This work highlights the potential of functionalized Schottky junction catalysts for coordinating redox reactions in water electrolysis, thereby resolving the trade-off between catalytic activity and stability.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 5","pages":"Article 100224"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772834X24000551/pdfft?md5=75d62da94bdae536ceaf12b9ddcf0503&pid=1-s2.0-S2772834X24000551-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Targeted doping induces interfacial orientation for constructing surface-functionalized Schottky junctions to coordinate redox reactions in water electrolysis\",\"authors\":\"Guangping Yang , Tianxiang Yang , Zhiguo Wang , Ke Wang , Mengmeng Zhang , Peter D. Lund , Sining Yun\",\"doi\":\"10.1016/j.apmate.2024.100224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tuning the surface properties of catalysts is an effective method for accelerating water electrolysis. Herein, we propose a directional doping and interfacial coupling strategy to design two surface-functionalized Schottky junction catalysts for coordinating the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Directional doping with B/S atoms endows amphiphilic g-C<sub>3</sub>N<sub>4</sub> with significant n-/p-type semiconductor properties. Further coupling with Fe<sub>3</sub>C modulates the energy band levels of B–C<sub>3</sub>N<sub>4</sub> and S–C<sub>3</sub>N<sub>4</sub>, thus resulting in functionalized Schottky junction catalysts with specific surface-adsorption properties. The space-charge region generated by the dual modulation induces a local “OH<sup>−</sup>- and H<sup>+</sup>-enriched” environment, thus selectively promoting the kinetic behavior of the OER/HER. Impressively, the designed B–C<sub>3</sub>N<sub>4</sub>@Fe<sub>3</sub>C||S–C<sub>3</sub>N<sub>4</sub>@Fe<sub>3</sub>C pair requires only a low voltage of 1.52 V to achieve efficient water electrolysis at 10 mA cm<sup>−2</sup>. This work highlights the potential of functionalized Schottky junction catalysts for coordinating redox reactions in water electrolysis, thereby resolving the trade-off between catalytic activity and stability.</p></div>\",\"PeriodicalId\":7283,\"journal\":{\"name\":\"Advanced Powder Materials\",\"volume\":\"3 5\",\"pages\":\"Article 100224\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772834X24000551/pdfft?md5=75d62da94bdae536ceaf12b9ddcf0503&pid=1-s2.0-S2772834X24000551-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772834X24000551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X24000551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Targeted doping induces interfacial orientation for constructing surface-functionalized Schottky junctions to coordinate redox reactions in water electrolysis
Tuning the surface properties of catalysts is an effective method for accelerating water electrolysis. Herein, we propose a directional doping and interfacial coupling strategy to design two surface-functionalized Schottky junction catalysts for coordinating the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Directional doping with B/S atoms endows amphiphilic g-C3N4 with significant n-/p-type semiconductor properties. Further coupling with Fe3C modulates the energy band levels of B–C3N4 and S–C3N4, thus resulting in functionalized Schottky junction catalysts with specific surface-adsorption properties. The space-charge region generated by the dual modulation induces a local “OH−- and H+-enriched” environment, thus selectively promoting the kinetic behavior of the OER/HER. Impressively, the designed B–C3N4@Fe3C||S–C3N4@Fe3C pair requires only a low voltage of 1.52 V to achieve efficient water electrolysis at 10 mA cm−2. This work highlights the potential of functionalized Schottky junction catalysts for coordinating redox reactions in water electrolysis, thereby resolving the trade-off between catalytic activity and stability.