基于 Tsallis 熵的电网关键节点识别的结构洞和 K-shell 集成算法

Qian Wei, Wenrong Song, Li Ji, Yiwei Zhang, Yongguang Sun, Hongjun Sun
{"title":"基于 Tsallis 熵的电网关键节点识别的结构洞和 K-shell 集成算法","authors":"Qian Wei, Wenrong Song, Li Ji, Yiwei Zhang, Yongguang Sun, Hongjun Sun","doi":"10.1088/1742-6596/2774/1/012079","DOIUrl":null,"url":null,"abstract":"\n Considering the low-carbon development goals of “peak carbon emissions and carbon neutrality,” traditional energy enterprises, including oil fields, have accelerated the incorporation of new energy into their power grids. However, incorporating new energy generation into traditional oilfield power grids yields a series of safety hazards, making the stability of the oilfield power grid structure increasingly important. In this paper, a redefined theory of structural holes and the K-shell algorithm are utilized to identify both local and global key nodes in the oilfield power grid. The improved Tsallis entropy is employed to recognize these key nodes, accounting for their local influence within the oilfield power grid as well as their global status. Additionally, considering the electrical characteristics of the nodes, a set of measurement metrics suitable for oilfield power grid research is constructed. Finally, the IEEE-39 feeder system is simulated and compared with other key node identification methods. By analyzing the robustness of the topological structure and the loss load value of the power system after removing key nodes, the reliability and superiority of the proposed method are verified.","PeriodicalId":506941,"journal":{"name":"Journal of Physics: Conference Series","volume":"84 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated Structural Hole and K-shell Algorithm for Tsallis Entropy-based Identification of Key Nodes in Power Grids\",\"authors\":\"Qian Wei, Wenrong Song, Li Ji, Yiwei Zhang, Yongguang Sun, Hongjun Sun\",\"doi\":\"10.1088/1742-6596/2774/1/012079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Considering the low-carbon development goals of “peak carbon emissions and carbon neutrality,” traditional energy enterprises, including oil fields, have accelerated the incorporation of new energy into their power grids. However, incorporating new energy generation into traditional oilfield power grids yields a series of safety hazards, making the stability of the oilfield power grid structure increasingly important. In this paper, a redefined theory of structural holes and the K-shell algorithm are utilized to identify both local and global key nodes in the oilfield power grid. The improved Tsallis entropy is employed to recognize these key nodes, accounting for their local influence within the oilfield power grid as well as their global status. Additionally, considering the electrical characteristics of the nodes, a set of measurement metrics suitable for oilfield power grid research is constructed. Finally, the IEEE-39 feeder system is simulated and compared with other key node identification methods. By analyzing the robustness of the topological structure and the loss load value of the power system after removing key nodes, the reliability and superiority of the proposed method are verified.\",\"PeriodicalId\":506941,\"journal\":{\"name\":\"Journal of Physics: Conference Series\",\"volume\":\"84 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Conference Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-6596/2774/1/012079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Conference Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1742-6596/2774/1/012079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑到 "碳排放峰值化、碳中和 "的低碳发展目标,包括油田在内的传统能源企业加快了新能源并入电网的步伐。然而,将新能源发电并入传统油田电网会产生一系列安全隐患,使得油田电网结构的稳定性变得越来越重要。本文利用重新定义的结构洞理论和 K-shell 算法来识别油田电网中的局部和全局关键节点。采用改进的 Tsallis 熵来识别这些关键节点,同时考虑到它们在油田电网中的局部影响及其全局地位。此外,考虑到节点的电气特性,还构建了一套适合油田电网研究的测量指标。最后,对 IEEE-39 馈电系统进行了仿真,并与其他关键节点识别方法进行了比较。通过分析拓扑结构的鲁棒性和剔除关键节点后电力系统的损耗负荷值,验证了所提方法的可靠性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrated Structural Hole and K-shell Algorithm for Tsallis Entropy-based Identification of Key Nodes in Power Grids
Considering the low-carbon development goals of “peak carbon emissions and carbon neutrality,” traditional energy enterprises, including oil fields, have accelerated the incorporation of new energy into their power grids. However, incorporating new energy generation into traditional oilfield power grids yields a series of safety hazards, making the stability of the oilfield power grid structure increasingly important. In this paper, a redefined theory of structural holes and the K-shell algorithm are utilized to identify both local and global key nodes in the oilfield power grid. The improved Tsallis entropy is employed to recognize these key nodes, accounting for their local influence within the oilfield power grid as well as their global status. Additionally, considering the electrical characteristics of the nodes, a set of measurement metrics suitable for oilfield power grid research is constructed. Finally, the IEEE-39 feeder system is simulated and compared with other key node identification methods. By analyzing the robustness of the topological structure and the loss load value of the power system after removing key nodes, the reliability and superiority of the proposed method are verified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LPI radar waveform recognition model based on multiple feature image and quasi-residual attention module About the 3D virtualization of the Millikan oil drop experiment Study on the characteristics of the bypass flow field of the net structure under different Reynolds number conditions Exploring the Universe through Gamma-Ray Astronomy: Characterization and Performance of the LST-1 Telescope Analysis of structural dynamic response of vertical sound barriers under natural wind and vehicle induced pulsating wind effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1