盾构掘进过程中刀头与土壤相互作用的模型试验及其理论模型

IF 8.2 1区 工程技术 Q1 ENGINEERING, CIVIL Underground Space Pub Date : 2024-07-16 DOI:10.1016/j.undsp.2024.03.006
Xiang Shen , Dajun Yuan , Dalong Jin , Xiangsheng Chen , Weiping Luo , Yuansheng Peng , Kai Duan
{"title":"盾构掘进过程中刀头与土壤相互作用的模型试验及其理论模型","authors":"Xiang Shen ,&nbsp;Dajun Yuan ,&nbsp;Dalong Jin ,&nbsp;Xiangsheng Chen ,&nbsp;Weiping Luo ,&nbsp;Yuansheng Peng ,&nbsp;Kai Duan","doi":"10.1016/j.undsp.2024.03.006","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to develop a rational theoretical model for cutterhead-soil interaction. The cutterhead-soil interaction mechanism is divided into two components: the cutting action of the cutter on the soil and the extrusion of the cutterhead on the soil. By enhancing the Mckyes–Ali model, we analyze and deduce the force state of the cutter during shield tunneling, obtaining a calculation method for determining the force on the cutter. Additionally, we conduct an in-depth analysis of the extrusion effect of the cutterhead on the soil during shield tunneling, utilizing the fundamental solution of the Kelvin problem. Based on these theoretical calculations, we validate the tunneling thrust and cutterhead torque of the shield using our self-developed multi-functional large-scale shield tunneling test platform. The test results demonstrate that the tunneling thrust and cutterhead torque derived from the established cutterhead-soil interaction model in this paper are relatively close to the experimental monitoring values. This provides a theoretical foundation for establishing reasonable shield tunneling loads.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"20 ","pages":"Pages 46-68"},"PeriodicalIF":8.2000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000722/pdfft?md5=6100098abc815e1895e44ae09c9c2df5&pid=1-s2.0-S2467967424000722-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Model test on cutterhead-soil interaction during shield tunneling and its theoretical model\",\"authors\":\"Xiang Shen ,&nbsp;Dajun Yuan ,&nbsp;Dalong Jin ,&nbsp;Xiangsheng Chen ,&nbsp;Weiping Luo ,&nbsp;Yuansheng Peng ,&nbsp;Kai Duan\",\"doi\":\"10.1016/j.undsp.2024.03.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study aims to develop a rational theoretical model for cutterhead-soil interaction. The cutterhead-soil interaction mechanism is divided into two components: the cutting action of the cutter on the soil and the extrusion of the cutterhead on the soil. By enhancing the Mckyes–Ali model, we analyze and deduce the force state of the cutter during shield tunneling, obtaining a calculation method for determining the force on the cutter. Additionally, we conduct an in-depth analysis of the extrusion effect of the cutterhead on the soil during shield tunneling, utilizing the fundamental solution of the Kelvin problem. Based on these theoretical calculations, we validate the tunneling thrust and cutterhead torque of the shield using our self-developed multi-functional large-scale shield tunneling test platform. The test results demonstrate that the tunneling thrust and cutterhead torque derived from the established cutterhead-soil interaction model in this paper are relatively close to the experimental monitoring values. This provides a theoretical foundation for establishing reasonable shield tunneling loads.</p></div>\",\"PeriodicalId\":48505,\"journal\":{\"name\":\"Underground Space\",\"volume\":\"20 \",\"pages\":\"Pages 46-68\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2467967424000722/pdfft?md5=6100098abc815e1895e44ae09c9c2df5&pid=1-s2.0-S2467967424000722-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Underground Space\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2467967424000722\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467967424000722","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在建立刀盘与土壤相互作用的合理理论模型。刀盘与土体相互作用机理分为刀盘对土体的切削作用和刀盘对土体的挤压作用两部分。通过改进 Mckyes-Ali 模型,我们分析并推导了盾构掘进过程中刀盘的受力状态,获得了确定刀盘受力的计算方法。此外,我们还利用开尔文问题的基本解法,深入分析了盾构掘进过程中刀盘对土体的挤压效应。在这些理论计算的基础上,我们利用自主研发的多功能大型盾构掘进测试平台验证了盾构的掘进推力和刀盘扭矩。试验结果表明,本文建立的刀盘与土体相互作用模型得出的掘进推力和刀盘扭矩与实验监测值比较接近。这为建立合理的盾构掘进载荷提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model test on cutterhead-soil interaction during shield tunneling and its theoretical model

This study aims to develop a rational theoretical model for cutterhead-soil interaction. The cutterhead-soil interaction mechanism is divided into two components: the cutting action of the cutter on the soil and the extrusion of the cutterhead on the soil. By enhancing the Mckyes–Ali model, we analyze and deduce the force state of the cutter during shield tunneling, obtaining a calculation method for determining the force on the cutter. Additionally, we conduct an in-depth analysis of the extrusion effect of the cutterhead on the soil during shield tunneling, utilizing the fundamental solution of the Kelvin problem. Based on these theoretical calculations, we validate the tunneling thrust and cutterhead torque of the shield using our self-developed multi-functional large-scale shield tunneling test platform. The test results demonstrate that the tunneling thrust and cutterhead torque derived from the established cutterhead-soil interaction model in this paper are relatively close to the experimental monitoring values. This provides a theoretical foundation for establishing reasonable shield tunneling loads.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Underground Space
Underground Space ENGINEERING, CIVIL-
CiteScore
10.20
自引率
14.10%
发文量
71
审稿时长
63 days
期刊介绍: Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.
期刊最新文献
Analysis of hydraulic breakdown and seepage of tail sealing system in shield tunnel machines Characteristics of deformation and defect of shield tunnel in coastal structured soil in China Detecting soil mixing, grain size distribution, and clogging potential of tunnel excavation face by classification-regression algorithms using EPBM operational data Experimental study on mechanical behavior and countermeasures of mountain tunnels under strike-slip fault movement Numerical studies on the synergistic effects of smoke extraction and control performance by mechanical ventilation shafts during tunnel fires
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1