磷氮共掺石墨烯:氧还原反应的稳定性和催化活性

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Carbon Trends Pub Date : 2024-07-17 DOI:10.1016/j.cartre.2024.100379
Jinmin Guo , Weiwei Shao , Hongfeng Yan , Manhong Zhao , Yang-Yi Liu , Qiufeng Fang , Tianle Xia , Jinlong Wang , Xiao-Chun Li
{"title":"磷氮共掺石墨烯:氧还原反应的稳定性和催化活性","authors":"Jinmin Guo ,&nbsp;Weiwei Shao ,&nbsp;Hongfeng Yan ,&nbsp;Manhong Zhao ,&nbsp;Yang-Yi Liu ,&nbsp;Qiufeng Fang ,&nbsp;Tianle Xia ,&nbsp;Jinlong Wang ,&nbsp;Xiao-Chun Li","doi":"10.1016/j.cartre.2024.100379","DOIUrl":null,"url":null,"abstract":"<div><p>This study systematically investigated the stable configurations and oxygen reduction reaction (ORR) catalytic activity of PN co-doped graphene using first-principles methods. We found that PN co-doped graphene substrates are generally highly stable. The adsorption energy of adsorbates is linearly positively correlated with the number of electrons obtained from the substrate. The P atoms serve as catalytic activity sites, the co-doping of N significantly enhances the adsorption energies of intermediate species in the ORR process, facilitating the direct dissociation of O2 and O2H. The solvation effect has a non-negligible impact on the adsorption energy of adsorbates, especially for O2. Due to the excessive adsorption of O, it poisons and inhibits the catalytic activity of P active sites for ORR. However, after O adsorption, the C atoms neighboring the PN impurity atoms in the P-Nn-Gra (n=2,3) substrates exhibit better catalytic activity than that of graphene doped with P/N alone. The P-Nn-defect-Gra (n=2,3,4) substrates are potential catalysts with good HER catalytic activity.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"16 ","pages":"Article 100379"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000609/pdfft?md5=517906effb23e217946feaa923edb6f9&pid=1-s2.0-S2667056924000609-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Phosphorus and nitrogen co-doped-graphene: Stability and catalytic activity in oxygen reduction reaction\",\"authors\":\"Jinmin Guo ,&nbsp;Weiwei Shao ,&nbsp;Hongfeng Yan ,&nbsp;Manhong Zhao ,&nbsp;Yang-Yi Liu ,&nbsp;Qiufeng Fang ,&nbsp;Tianle Xia ,&nbsp;Jinlong Wang ,&nbsp;Xiao-Chun Li\",\"doi\":\"10.1016/j.cartre.2024.100379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study systematically investigated the stable configurations and oxygen reduction reaction (ORR) catalytic activity of PN co-doped graphene using first-principles methods. We found that PN co-doped graphene substrates are generally highly stable. The adsorption energy of adsorbates is linearly positively correlated with the number of electrons obtained from the substrate. The P atoms serve as catalytic activity sites, the co-doping of N significantly enhances the adsorption energies of intermediate species in the ORR process, facilitating the direct dissociation of O2 and O2H. The solvation effect has a non-negligible impact on the adsorption energy of adsorbates, especially for O2. Due to the excessive adsorption of O, it poisons and inhibits the catalytic activity of P active sites for ORR. However, after O adsorption, the C atoms neighboring the PN impurity atoms in the P-Nn-Gra (n=2,3) substrates exhibit better catalytic activity than that of graphene doped with P/N alone. The P-Nn-defect-Gra (n=2,3,4) substrates are potential catalysts with good HER catalytic activity.</p></div>\",\"PeriodicalId\":52629,\"journal\":{\"name\":\"Carbon Trends\",\"volume\":\"16 \",\"pages\":\"Article 100379\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667056924000609/pdfft?md5=517906effb23e217946feaa923edb6f9&pid=1-s2.0-S2667056924000609-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667056924000609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056924000609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用第一性原理方法系统地研究了掺杂 PN 的石墨烯的稳定构型和氧还原反应(ORR)催化活性。我们发现,PN 共掺杂石墨烯基底通常具有很高的稳定性。吸附剂的吸附能与从基底获得的电子数呈线性正相关。P 原子作为催化活性位点,N 的共掺杂显著增强了 ORR 过程中中间物种的吸附能,促进了 O2 和 O2H 的直接解离。溶解效应对吸附剂的吸附能有不可忽略的影响,尤其是对 O2。由于 O 的过量吸附,会毒害和抑制 ORR 的 P 活性位点的催化活性。然而,吸附 O 后,P-Nn-Gra(n=2,3)基底中与 PN 杂质原子相邻的 C 原子比单独掺杂 P/N 的石墨烯表现出更好的催化活性。P-Nn-缺陷-Gra(n=2,3,4)基底是具有良好 HER 催化活性的潜在催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phosphorus and nitrogen co-doped-graphene: Stability and catalytic activity in oxygen reduction reaction

This study systematically investigated the stable configurations and oxygen reduction reaction (ORR) catalytic activity of PN co-doped graphene using first-principles methods. We found that PN co-doped graphene substrates are generally highly stable. The adsorption energy of adsorbates is linearly positively correlated with the number of electrons obtained from the substrate. The P atoms serve as catalytic activity sites, the co-doping of N significantly enhances the adsorption energies of intermediate species in the ORR process, facilitating the direct dissociation of O2 and O2H. The solvation effect has a non-negligible impact on the adsorption energy of adsorbates, especially for O2. Due to the excessive adsorption of O, it poisons and inhibits the catalytic activity of P active sites for ORR. However, after O adsorption, the C atoms neighboring the PN impurity atoms in the P-Nn-Gra (n=2,3) substrates exhibit better catalytic activity than that of graphene doped with P/N alone. The P-Nn-defect-Gra (n=2,3,4) substrates are potential catalysts with good HER catalytic activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
期刊最新文献
Eco and user–friendly curcumin based nanocomposite forensic powder from coal fly ash for latent fingerprint detection in crime scenes Reduced thermal conductivity of constricted graphene nanoribbons for thermoelectric applications Unveiling the nanostructured nature of pyrobitumen and shungite carbons through Raman, X-ray and theoretical analyses Tuning the soft bandgap in the density of the states: The measurement of a "magnetogap" effect in carbon-black samples Exploration of graphitic carbon from crude oil vacuum residue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1