通过相变策略设计 BiOBr/TpBD-COF S 型异质界面,促进光催化制氢

IF 8.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materiomics Pub Date : 2024-07-26 DOI:10.1016/j.jmat.2024.07.004
Huili Ran , Xue Liu , Jiajie Fan , Yun Yang , Lijie Zhang , Qin Guo , Bicheng Zhu , Quanlong Xu
{"title":"通过相变策略设计 BiOBr/TpBD-COF S 型异质界面,促进光催化制氢","authors":"Huili Ran ,&nbsp;Xue Liu ,&nbsp;Jiajie Fan ,&nbsp;Yun Yang ,&nbsp;Lijie Zhang ,&nbsp;Qin Guo ,&nbsp;Bicheng Zhu ,&nbsp;Quanlong Xu","doi":"10.1016/j.jmat.2024.07.004","DOIUrl":null,"url":null,"abstract":"<div><div>The construction of heterojunction is an effective way to promote the photoinduced charge carrier separation in spatial, thus accelerating the photocatalytic reaction. However, the regulation of interface properties, as a crucial factor in affecting the charge carrier diffusion process, still remains a significant challenge. In this work, BiOBr/TpBD-COF heterojunction was successfully constructed <em>via</em> a novel phase transformation strategy. Specifically, perovskite Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub> was first synthesized and then <em>in-situ</em> transformed into BiOBr during the preparation of TpBD-COF procedure, thus obtaining BiOBr/TpBD-COF heterojunction with favorable interface. According to the <em>in-situ</em> X-ray photoelectron spectroscopy (XPS) characterization and electron paramagnetic resonance (EPR) analysis, the photogenerated electrons with weak reduction power transfer from BiOBr to TpBD-COF driven by the internal electric field under irradiation, conforming to S-scheme charge transfer mode. As a result, the photogenerated electrons and holes with strong redox abilities are spatially located on TpBD-COF and BiOBr surface, respectively, endowing the strong driving force toward the water splitting reaction. The optimized 10%BiOBr/TpBD-COF displayed remarkably enhanced photocatalytic hydrogen evolution rate (16.17 mmol⋅g<sup>−1</sup>⋅h<sup>−1</sup>) in comparison with TpBD-COF (5.18 mmol⋅g<sup>−1</sup>⋅h<sup>−1</sup>). This study will provide some novel inspirations for developing efficient COF-based S-scheme heterojunction photocatalysts.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 3","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering BiOBr/TpBD-COF S-scheme heterointerface via phase transformation strategy for boosted photocatalytic hydrogen generation\",\"authors\":\"Huili Ran ,&nbsp;Xue Liu ,&nbsp;Jiajie Fan ,&nbsp;Yun Yang ,&nbsp;Lijie Zhang ,&nbsp;Qin Guo ,&nbsp;Bicheng Zhu ,&nbsp;Quanlong Xu\",\"doi\":\"10.1016/j.jmat.2024.07.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The construction of heterojunction is an effective way to promote the photoinduced charge carrier separation in spatial, thus accelerating the photocatalytic reaction. However, the regulation of interface properties, as a crucial factor in affecting the charge carrier diffusion process, still remains a significant challenge. In this work, BiOBr/TpBD-COF heterojunction was successfully constructed <em>via</em> a novel phase transformation strategy. Specifically, perovskite Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub> was first synthesized and then <em>in-situ</em> transformed into BiOBr during the preparation of TpBD-COF procedure, thus obtaining BiOBr/TpBD-COF heterojunction with favorable interface. According to the <em>in-situ</em> X-ray photoelectron spectroscopy (XPS) characterization and electron paramagnetic resonance (EPR) analysis, the photogenerated electrons with weak reduction power transfer from BiOBr to TpBD-COF driven by the internal electric field under irradiation, conforming to S-scheme charge transfer mode. As a result, the photogenerated electrons and holes with strong redox abilities are spatially located on TpBD-COF and BiOBr surface, respectively, endowing the strong driving force toward the water splitting reaction. The optimized 10%BiOBr/TpBD-COF displayed remarkably enhanced photocatalytic hydrogen evolution rate (16.17 mmol⋅g<sup>−1</sup>⋅h<sup>−1</sup>) in comparison with TpBD-COF (5.18 mmol⋅g<sup>−1</sup>⋅h<sup>−1</sup>). This study will provide some novel inspirations for developing efficient COF-based S-scheme heterojunction photocatalysts.</div></div>\",\"PeriodicalId\":16173,\"journal\":{\"name\":\"Journal of Materiomics\",\"volume\":\"11 3\",\"pages\":\"\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materiomics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352847824001576\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352847824001576","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

构建异质结是促进空间光诱导电荷载流子分离,从而加速光催化反应的有效方法。然而,作为影响电荷载流子扩散过程的关键因素,界面性质的调控仍然是一个重大挑战。在这项工作中,通过一种新颖的相变策略,成功地构建了 BiOBr/TpBD-COF 异质结。具体来说,首先合成了包晶Cs3Bi2Br9,然后在制备TpBD-COF的过程中将其原位转化为BiOBr,从而获得了具有良好界面的BiOBr/TpBD-COF异质结。根据原位 X 射线光电子能谱(XPS)表征和电子顺磁共振(EPR)分析,在内部电场的驱动下,光生电子以微弱的还原力从 BiOBr 向 TpBD-COF 转移,符合 S 型电荷转移模式。因此,具有强氧化还原能力的光生电子和空穴分别位于 TpBD-COF 和 BiOBr 表面,为水分离反应提供了强大的驱动力。优化后的 10%BiOBr/TpBD-COF 与 TpBD-COF 相比(5.18 mmol⋅g-1⋅h-1),光催化氢进化率显著提高(16.17 mmol⋅g-1⋅h-1)。这项研究将为开发基于 COF 的高效 S 型异质结光催化剂提供一些新的启发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Engineering BiOBr/TpBD-COF S-scheme heterointerface via phase transformation strategy for boosted photocatalytic hydrogen generation
The construction of heterojunction is an effective way to promote the photoinduced charge carrier separation in spatial, thus accelerating the photocatalytic reaction. However, the regulation of interface properties, as a crucial factor in affecting the charge carrier diffusion process, still remains a significant challenge. In this work, BiOBr/TpBD-COF heterojunction was successfully constructed via a novel phase transformation strategy. Specifically, perovskite Cs3Bi2Br9 was first synthesized and then in-situ transformed into BiOBr during the preparation of TpBD-COF procedure, thus obtaining BiOBr/TpBD-COF heterojunction with favorable interface. According to the in-situ X-ray photoelectron spectroscopy (XPS) characterization and electron paramagnetic resonance (EPR) analysis, the photogenerated electrons with weak reduction power transfer from BiOBr to TpBD-COF driven by the internal electric field under irradiation, conforming to S-scheme charge transfer mode. As a result, the photogenerated electrons and holes with strong redox abilities are spatially located on TpBD-COF and BiOBr surface, respectively, endowing the strong driving force toward the water splitting reaction. The optimized 10%BiOBr/TpBD-COF displayed remarkably enhanced photocatalytic hydrogen evolution rate (16.17 mmol⋅g−1⋅h−1) in comparison with TpBD-COF (5.18 mmol⋅g−1⋅h−1). This study will provide some novel inspirations for developing efficient COF-based S-scheme heterojunction photocatalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materiomics
Journal of Materiomics Materials Science-Metals and Alloys
CiteScore
14.30
自引率
6.40%
发文量
331
审稿时长
37 days
期刊介绍: The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.
期刊最新文献
Convenient synthesis of hollow tubular In2O3/PDA S-scheme inorganic/organic heterojunction photocatalyst for H2O2 production and its mechanism Synergistic effects lead to high thermoelectric performance of iodine doped pseudo-binary layered GeSb2Te4 Surface oxygen vacancies in amorphous Fe2O3 tailored nonlinear optical properties for ultrafast photonics High temperature magnetoelectric effect in Fe2TeO6 F− surface modified ZnO for enhanced photocatalytic H2O2 production and its fs-TAS investigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1