{"title":"开发和优化用于估计线性低密度聚乙烯机械性能的机器学习模型","authors":"Saeed Shirazian , Thoa Huynh , Shaheen M. Sarkar , Masoud Habibi Zare","doi":"10.1016/j.polymertesting.2024.108525","DOIUrl":null,"url":null,"abstract":"<div><p>A hybrid methodology was developed and implemented for estimation of polymeric mechanical properties in rotational moulding process. The considered polymer in this study is linear low-density polyethylene, known as LLDPE, which has extensive application in plastic industry. The mechanical properties of the polymer were assessed and correlated to the oven residence time to build the predictive model of moulding process. A tiny dataset containing only 25 data rows via a number of machine learning models were assessed. Oven residence time is the only input, while the LLDPE's properties including tensile strength, impact strength, and flexure strength are the outputs considered in the machine learning models. We used tree-based ensemble methods for modeling in this work and they are tuned using FA (Firefly Algorithm) optimizer to find optimal hyper-parameters of them. Finally, the optimal models had shown a great performance to predict the output accurately. For tensile strength, the best model (FA-ET) has an R<sup>2</sup> value of 0.9994, this score is 0.9995 for impact strength and 0.9968 for flexure strength. The tree-based models tuned in this study revealed to be robust in estimation of polymeric properties and can be used to obtain the products with the best quality.</p></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"137 ","pages":"Article 108525"},"PeriodicalIF":5.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0142941824002022/pdfft?md5=24647feef29c23db0c1b5d9a6d68fb5e&pid=1-s2.0-S0142941824002022-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Development and optimization of machine learning models for estimation of mechanical properties of linear low-density polyethylene\",\"authors\":\"Saeed Shirazian , Thoa Huynh , Shaheen M. Sarkar , Masoud Habibi Zare\",\"doi\":\"10.1016/j.polymertesting.2024.108525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A hybrid methodology was developed and implemented for estimation of polymeric mechanical properties in rotational moulding process. The considered polymer in this study is linear low-density polyethylene, known as LLDPE, which has extensive application in plastic industry. The mechanical properties of the polymer were assessed and correlated to the oven residence time to build the predictive model of moulding process. A tiny dataset containing only 25 data rows via a number of machine learning models were assessed. Oven residence time is the only input, while the LLDPE's properties including tensile strength, impact strength, and flexure strength are the outputs considered in the machine learning models. We used tree-based ensemble methods for modeling in this work and they are tuned using FA (Firefly Algorithm) optimizer to find optimal hyper-parameters of them. Finally, the optimal models had shown a great performance to predict the output accurately. For tensile strength, the best model (FA-ET) has an R<sup>2</sup> value of 0.9994, this score is 0.9995 for impact strength and 0.9968 for flexure strength. The tree-based models tuned in this study revealed to be robust in estimation of polymeric properties and can be used to obtain the products with the best quality.</p></div>\",\"PeriodicalId\":20628,\"journal\":{\"name\":\"Polymer Testing\",\"volume\":\"137 \",\"pages\":\"Article 108525\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0142941824002022/pdfft?md5=24647feef29c23db0c1b5d9a6d68fb5e&pid=1-s2.0-S0142941824002022-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Testing\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142941824002022\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941824002022","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Development and optimization of machine learning models for estimation of mechanical properties of linear low-density polyethylene
A hybrid methodology was developed and implemented for estimation of polymeric mechanical properties in rotational moulding process. The considered polymer in this study is linear low-density polyethylene, known as LLDPE, which has extensive application in plastic industry. The mechanical properties of the polymer were assessed and correlated to the oven residence time to build the predictive model of moulding process. A tiny dataset containing only 25 data rows via a number of machine learning models were assessed. Oven residence time is the only input, while the LLDPE's properties including tensile strength, impact strength, and flexure strength are the outputs considered in the machine learning models. We used tree-based ensemble methods for modeling in this work and they are tuned using FA (Firefly Algorithm) optimizer to find optimal hyper-parameters of them. Finally, the optimal models had shown a great performance to predict the output accurately. For tensile strength, the best model (FA-ET) has an R2 value of 0.9994, this score is 0.9995 for impact strength and 0.9968 for flexure strength. The tree-based models tuned in this study revealed to be robust in estimation of polymeric properties and can be used to obtain the products with the best quality.
期刊介绍:
Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization.
The scope includes but is not limited to the following main topics:
Novel testing methods and Chemical analysis
• mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology
Physical properties and behaviour of novel polymer systems
• nanoscale properties, morphology, transport properties
Degradation and recycling of polymeric materials when combined with novel testing or characterization methods
• degradation, biodegradation, ageing and fire retardancy
Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.