燃烧室噪声影响下的非线性热声效应的格林函数分析

IF 4.3 2区 工程技术 Q1 ACOUSTICS Journal of Sound and Vibration Pub Date : 2024-07-26 DOI:10.1016/j.jsv.2024.118621
{"title":"燃烧室噪声影响下的非线性热声效应的格林函数分析","authors":"","doi":"10.1016/j.jsv.2024.118621","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an analytical study to predict the effect of noise in a thermoacoustic system. The starting point of our analysis is the acoustic analogy equation with two source terms: one represents the fluctuating heat release rate, and the other one represents the noise. The heat release rate is nonlinear and modelled by a generalised-law with amplitude-dependent time-lag and coupling coefficients. A Green’s function approach is used to convert the acoustic analogy equation (a PDE) into an integral equation. An essential element in this approach is the tailored Green’s function of the combustion chamber. We calculate this analytically for a 1-D combustion chamber with general end conditions and a non-uniform mean temperature. The integral equation is then used for predictions in the time-domain and frequency-domain. We focus on the following three phenomena: transient oscillations, noise-induced triggering, and hysteresis. Our predictions are in line with experimental observations reported in earlier studies: (1) Noise speeds up the time it takes a transient oscillation with growing amplitude to reach its limit cycle. (2) Noise can launch a linearly stable system into an unstable state. (3) Noise reduces the width of a hysteresis zone. Both white noise and pink noise are considered; pink noise is found to be more effective.</p></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022460X24003833/pdfft?md5=ab876d44f0228397f725d73b1fea5b09&pid=1-s2.0-S0022460X24003833-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Green’s function analysis of nonlinear thermoacoustic effects under the influence of noise in a combustion chamber\",\"authors\":\"\",\"doi\":\"10.1016/j.jsv.2024.118621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents an analytical study to predict the effect of noise in a thermoacoustic system. The starting point of our analysis is the acoustic analogy equation with two source terms: one represents the fluctuating heat release rate, and the other one represents the noise. The heat release rate is nonlinear and modelled by a generalised-law with amplitude-dependent time-lag and coupling coefficients. A Green’s function approach is used to convert the acoustic analogy equation (a PDE) into an integral equation. An essential element in this approach is the tailored Green’s function of the combustion chamber. We calculate this analytically for a 1-D combustion chamber with general end conditions and a non-uniform mean temperature. The integral equation is then used for predictions in the time-domain and frequency-domain. We focus on the following three phenomena: transient oscillations, noise-induced triggering, and hysteresis. Our predictions are in line with experimental observations reported in earlier studies: (1) Noise speeds up the time it takes a transient oscillation with growing amplitude to reach its limit cycle. (2) Noise can launch a linearly stable system into an unstable state. (3) Noise reduces the width of a hysteresis zone. Both white noise and pink noise are considered; pink noise is found to be more effective.</p></div>\",\"PeriodicalId\":17233,\"journal\":{\"name\":\"Journal of Sound and Vibration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022460X24003833/pdfft?md5=ab876d44f0228397f725d73b1fea5b09&pid=1-s2.0-S0022460X24003833-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sound and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022460X24003833\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X24003833","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一项预测热声系统中噪声影响的分析研究。我们分析的出发点是带有两个源项的声学类比方程:一个源项代表波动的热释放率,另一个源项代表噪声。热释放率是非线性的,由一个具有随振幅变化的时滞和耦合系数的广义定律来模拟。格林函数法用于将声学类比方程(PDE)转换为积分方程。这种方法的一个基本要素是燃烧室的定制格林函数。我们对具有一般末端条件和非均匀平均温度的一维燃烧室进行分析计算。然后利用积分方程进行时域和频域预测。我们重点关注以下三种现象:瞬态振荡、噪声诱发的触发和滞后。我们的预测与早期研究报告中的实验观察结果一致:(1)噪声加快了振幅不断增大的瞬态振荡达到极限周期的时间。(2) 噪声会使线性稳定的系统进入不稳定状态。(3) 噪声会减小滞后区的宽度。我们考虑了白噪声和粉红噪声,发现粉红噪声更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Green’s function analysis of nonlinear thermoacoustic effects under the influence of noise in a combustion chamber

This paper presents an analytical study to predict the effect of noise in a thermoacoustic system. The starting point of our analysis is the acoustic analogy equation with two source terms: one represents the fluctuating heat release rate, and the other one represents the noise. The heat release rate is nonlinear and modelled by a generalised-law with amplitude-dependent time-lag and coupling coefficients. A Green’s function approach is used to convert the acoustic analogy equation (a PDE) into an integral equation. An essential element in this approach is the tailored Green’s function of the combustion chamber. We calculate this analytically for a 1-D combustion chamber with general end conditions and a non-uniform mean temperature. The integral equation is then used for predictions in the time-domain and frequency-domain. We focus on the following three phenomena: transient oscillations, noise-induced triggering, and hysteresis. Our predictions are in line with experimental observations reported in earlier studies: (1) Noise speeds up the time it takes a transient oscillation with growing amplitude to reach its limit cycle. (2) Noise can launch a linearly stable system into an unstable state. (3) Noise reduces the width of a hysteresis zone. Both white noise and pink noise are considered; pink noise is found to be more effective.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sound and Vibration
Journal of Sound and Vibration 工程技术-工程:机械
CiteScore
9.10
自引率
10.60%
发文量
551
审稿时长
69 days
期刊介绍: The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application. JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.
期刊最新文献
A new contact force model for revolute joints considering elastic layer characteristics effects Robustness evaluation of acceleration-based early rub detection methodologies with real fluid-induced noise Extraction and characteristic analysis of the nonlinear acoustic impedance of circular orifice in the presence of bias flow A vibro-impact remote-controlled capsule in millimeter scale: Design, modeling, experimental validation and dynamic response Atypical second harmonic A0 mode Lamb waves in non-uniform plates for local incipient damage monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1