Zhilong Deng , Xuanbo Liu , Yuqi Dou , Xichao Su , Haixu Li , Lei Wang , Xinwei Wang
{"title":"拖曳模式下航母舰队的自主出动调度","authors":"Zhilong Deng , Xuanbo Liu , Yuqi Dou , Xichao Su , Haixu Li , Lei Wang , Xinwei Wang","doi":"10.1016/j.dt.2024.07.011","DOIUrl":null,"url":null,"abstract":"<div><div>Safe and efficient sortie scheduling on the confined flight deck is crucial for maintaining high combat effectiveness of the aircraft carrier. The primary difficulty exactly lies in the spatiotemporal coordination, i.e., allocation of limited supporting resources and collision-avoidance between heterogeneous dispatch entities. In this paper, the problem is investigated in the perspective of hybrid flow-shop scheduling problem by synthesizing the precedence, space and resource constraints. Specifically, eight processing procedures are abstracted, where tractors, preparing spots, catapults, and launching are virtualized as machines. By analyzing the constraints in sortie scheduling, a mixed-integer planning model is constructed. In particular, the constraint on preparing spot occupancy is improved to further enhance the sortie efficiency. The basic trajectory library for each dispatch entity is generated and a delayed strategy is integrated to address the collision-avoidance issue. To efficiently solve the formulated HFSP, which is essentially a combinatorial problem with tightly coupled constraints, a chaos-initialized genetic algorithm is developed. The solution framework is validated by the simulation environment referring to the Fort-class carrier, exhibiting higher sortie efficiency when compared to existing strategies. And animation of the simulation results is available at <span><span>www.bilibili.com/video/BV14t421A7Tt/</span><svg><path></path></svg></span>. The study presents a promising supporting technique for autonomous flight deck operation in the foreseeable future, and can be easily extended to other supporting scenarios, e.g., ammunition delivery and aircraft maintenance.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"43 ","pages":"Pages 1-12"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autonomous sortie scheduling for carrier aircraft fleet under towing mode\",\"authors\":\"Zhilong Deng , Xuanbo Liu , Yuqi Dou , Xichao Su , Haixu Li , Lei Wang , Xinwei Wang\",\"doi\":\"10.1016/j.dt.2024.07.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Safe and efficient sortie scheduling on the confined flight deck is crucial for maintaining high combat effectiveness of the aircraft carrier. The primary difficulty exactly lies in the spatiotemporal coordination, i.e., allocation of limited supporting resources and collision-avoidance between heterogeneous dispatch entities. In this paper, the problem is investigated in the perspective of hybrid flow-shop scheduling problem by synthesizing the precedence, space and resource constraints. Specifically, eight processing procedures are abstracted, where tractors, preparing spots, catapults, and launching are virtualized as machines. By analyzing the constraints in sortie scheduling, a mixed-integer planning model is constructed. In particular, the constraint on preparing spot occupancy is improved to further enhance the sortie efficiency. The basic trajectory library for each dispatch entity is generated and a delayed strategy is integrated to address the collision-avoidance issue. To efficiently solve the formulated HFSP, which is essentially a combinatorial problem with tightly coupled constraints, a chaos-initialized genetic algorithm is developed. The solution framework is validated by the simulation environment referring to the Fort-class carrier, exhibiting higher sortie efficiency when compared to existing strategies. And animation of the simulation results is available at <span><span>www.bilibili.com/video/BV14t421A7Tt/</span><svg><path></path></svg></span>. The study presents a promising supporting technique for autonomous flight deck operation in the foreseeable future, and can be easily extended to other supporting scenarios, e.g., ammunition delivery and aircraft maintenance.</div></div>\",\"PeriodicalId\":58209,\"journal\":{\"name\":\"Defence Technology(防务技术)\",\"volume\":\"43 \",\"pages\":\"Pages 1-12\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defence Technology(防务技术)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214914724001818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Technology(防务技术)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214914724001818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Autonomous sortie scheduling for carrier aircraft fleet under towing mode
Safe and efficient sortie scheduling on the confined flight deck is crucial for maintaining high combat effectiveness of the aircraft carrier. The primary difficulty exactly lies in the spatiotemporal coordination, i.e., allocation of limited supporting resources and collision-avoidance between heterogeneous dispatch entities. In this paper, the problem is investigated in the perspective of hybrid flow-shop scheduling problem by synthesizing the precedence, space and resource constraints. Specifically, eight processing procedures are abstracted, where tractors, preparing spots, catapults, and launching are virtualized as machines. By analyzing the constraints in sortie scheduling, a mixed-integer planning model is constructed. In particular, the constraint on preparing spot occupancy is improved to further enhance the sortie efficiency. The basic trajectory library for each dispatch entity is generated and a delayed strategy is integrated to address the collision-avoidance issue. To efficiently solve the formulated HFSP, which is essentially a combinatorial problem with tightly coupled constraints, a chaos-initialized genetic algorithm is developed. The solution framework is validated by the simulation environment referring to the Fort-class carrier, exhibiting higher sortie efficiency when compared to existing strategies. And animation of the simulation results is available at www.bilibili.com/video/BV14t421A7Tt/. The study presents a promising supporting technique for autonomous flight deck operation in the foreseeable future, and can be easily extended to other supporting scenarios, e.g., ammunition delivery and aircraft maintenance.
Defence Technology(防务技术)Mechanical Engineering, Control and Systems Engineering, Industrial and Manufacturing Engineering
CiteScore
8.70
自引率
0.00%
发文量
728
审稿时长
25 days
期刊介绍:
Defence Technology, a peer reviewed journal, is published monthly and aims to become the best international academic exchange platform for the research related to defence technology. It publishes original research papers having direct bearing on defence, with a balanced coverage on analytical, experimental, numerical simulation and applied investigations. It covers various disciplines of science, technology and engineering.