在用亚临界水提取硫酸化黄酮类化合物之前,优化用超临界二氧化碳预处理黄花菜叶的方法

IF 3.4 3区 工程技术 Q2 CHEMISTRY, PHYSICAL Journal of Supercritical Fluids Pub Date : 2024-07-26 DOI:10.1016/j.supflu.2024.106349
Paulina Falletti , María F. Barrera Vázquez , Pedro H. Santos , Luiz G. Gonçalves Rodrigues , Marcelo Lanza , Raquel E. Martini , Laura R. Comini
{"title":"在用亚临界水提取硫酸化黄酮类化合物之前,优化用超临界二氧化碳预处理黄花菜叶的方法","authors":"Paulina Falletti ,&nbsp;María F. Barrera Vázquez ,&nbsp;Pedro H. Santos ,&nbsp;Luiz G. Gonçalves Rodrigues ,&nbsp;Marcelo Lanza ,&nbsp;Raquel E. Martini ,&nbsp;Laura R. Comini","doi":"10.1016/j.supflu.2024.106349","DOIUrl":null,"url":null,"abstract":"<div><p><em>Flaveria bidentis</em> is an invasive plant containing Sulfated Flavonoids (SFs) with therapeutic potential. The extraction of these compounds would add value to the biomass generated during weeding. This work reports the optimization of the pretreatment of <em>F. bidentis</em> leaves with supercritical CO<sub>2</sub> (P-SC-CO<sub>2</sub>) prior extraction of these compounds using subcritical water extraction. The combined effect of different levels of the three factors on P-SC-CO<sub>2</sub>, Time, Pressure and Depressurization rate, was investigated with Response Surface Methodology. The optimal pretreatment conditions were as follows: Time = 30 min, Pressure = 30 MPa and Depressurization rate = 2 kg CO<sub>2</sub>/h. Under these conditions, 72.45 ± 0.99 mg of totals SFs/100 g of leaves was recovered, practically doubling total SFs extraction yield in the absence of pretreatment. In addition, the structural damage caused by P-SC-CO<sub>2</sub> on the leaves was detected using Scanning Electron Microscopy.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"213 ","pages":"Article 106349"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of supercritical carbon dioxide pretreatment of Flaveria bidentis leaves prior extraction of sulfated flavonoids with subcritical water\",\"authors\":\"Paulina Falletti ,&nbsp;María F. Barrera Vázquez ,&nbsp;Pedro H. Santos ,&nbsp;Luiz G. Gonçalves Rodrigues ,&nbsp;Marcelo Lanza ,&nbsp;Raquel E. Martini ,&nbsp;Laura R. Comini\",\"doi\":\"10.1016/j.supflu.2024.106349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Flaveria bidentis</em> is an invasive plant containing Sulfated Flavonoids (SFs) with therapeutic potential. The extraction of these compounds would add value to the biomass generated during weeding. This work reports the optimization of the pretreatment of <em>F. bidentis</em> leaves with supercritical CO<sub>2</sub> (P-SC-CO<sub>2</sub>) prior extraction of these compounds using subcritical water extraction. The combined effect of different levels of the three factors on P-SC-CO<sub>2</sub>, Time, Pressure and Depressurization rate, was investigated with Response Surface Methodology. The optimal pretreatment conditions were as follows: Time = 30 min, Pressure = 30 MPa and Depressurization rate = 2 kg CO<sub>2</sub>/h. Under these conditions, 72.45 ± 0.99 mg of totals SFs/100 g of leaves was recovered, practically doubling total SFs extraction yield in the absence of pretreatment. In addition, the structural damage caused by P-SC-CO<sub>2</sub> on the leaves was detected using Scanning Electron Microscopy.</p></div>\",\"PeriodicalId\":17078,\"journal\":{\"name\":\"Journal of Supercritical Fluids\",\"volume\":\"213 \",\"pages\":\"Article 106349\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Supercritical Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0896844624001840\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercritical Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0896844624001840","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

黄花菜是一种入侵植物,含有具有治疗潜力的硫酸黄酮类化合物(SFs)。提取这些化合物将增加除草过程中产生的生物质的价值。本研究报告了在使用亚临界水萃取法萃取这些化合物之前,用超临界二氧化碳(P-SC-CO2)对双子叶植物叶片进行预处理的优化方法。采用响应面法研究了时间、压力和减压率这三个因素对 P-SC-CO2 不同水平的综合影响。最佳预处理条件如下时间 = 30 分钟,压力 = 30 兆帕,减压率 = 2 千克二氧化碳/小时。在这些条件下,每 100 克叶片可回收 72.45 ± 0.99 毫克的总 SFs,实际上是未进行预处理时总 SFs 提取率的两倍。此外,还利用扫描电子显微镜检测了 P-SC-CO2 对叶片结构造成的破坏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of supercritical carbon dioxide pretreatment of Flaveria bidentis leaves prior extraction of sulfated flavonoids with subcritical water

Flaveria bidentis is an invasive plant containing Sulfated Flavonoids (SFs) with therapeutic potential. The extraction of these compounds would add value to the biomass generated during weeding. This work reports the optimization of the pretreatment of F. bidentis leaves with supercritical CO2 (P-SC-CO2) prior extraction of these compounds using subcritical water extraction. The combined effect of different levels of the three factors on P-SC-CO2, Time, Pressure and Depressurization rate, was investigated with Response Surface Methodology. The optimal pretreatment conditions were as follows: Time = 30 min, Pressure = 30 MPa and Depressurization rate = 2 kg CO2/h. Under these conditions, 72.45 ± 0.99 mg of totals SFs/100 g of leaves was recovered, practically doubling total SFs extraction yield in the absence of pretreatment. In addition, the structural damage caused by P-SC-CO2 on the leaves was detected using Scanning Electron Microscopy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Supercritical Fluids
Journal of Supercritical Fluids 工程技术-工程:化工
CiteScore
7.60
自引率
10.30%
发文量
236
审稿时长
56 days
期刊介绍: The Journal of Supercritical Fluids is an international journal devoted to the fundamental and applied aspects of supercritical fluids and processes. Its aim is to provide a focused platform for academic and industrial researchers to report their findings and to have ready access to the advances in this rapidly growing field. Its coverage is multidisciplinary and includes both basic and applied topics. Thermodynamics and phase equilibria, reaction kinetics and rate processes, thermal and transport properties, and all topics related to processing such as separations (extraction, fractionation, purification, chromatography) nucleation and impregnation are within the scope. Accounts of specific engineering applications such as those encountered in food, fuel, natural products, minerals, pharmaceuticals and polymer industries are included. Topics related to high pressure equipment design, analytical techniques, sensors, and process control methodologies are also within the scope of the journal.
期刊最新文献
Flow mechanism and back gap windage loss of a sCO2 radial inflow turbine with impeller scallops Supercritical CO2 assisted bioMOF drug encapsulation and functionalization for delivery with a synergetic therapeutic value Supercritical CO2 green solvent extraction of Nepeta crispa: Evaluation of process optimization, chemical analysis, and biological activity IFC Contents continued
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1