通过在中空多孔管状 C3N4 和 Nb2O5 Z-Scheme 异质结中原位构建 Nb4+ 电荷载流子通道实现高效光催化氢气进化

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Physics Pub Date : 2024-08-01 DOI:10.1016/j.mtphys.2024.101523
Zhaoyu Ma , Xiafang Jia , Xiaoxi Song , Yuxi Xie , Lijiang Zhao , Junying Zhang
{"title":"通过在中空多孔管状 C3N4 和 Nb2O5 Z-Scheme 异质结中原位构建 Nb4+ 电荷载流子通道实现高效光催化氢气进化","authors":"Zhaoyu Ma ,&nbsp;Xiafang Jia ,&nbsp;Xiaoxi Song ,&nbsp;Yuxi Xie ,&nbsp;Lijiang Zhao ,&nbsp;Junying Zhang","doi":"10.1016/j.mtphys.2024.101523","DOIUrl":null,"url":null,"abstract":"<div><p>Optimizing heterojunction structure is an important way to improve photocatalytic activity. Herein, we report a novel hollow tubular C<sub>3</sub>N<sub>4</sub>/Nb<sup>4+</sup>/Nb<sub>2</sub>O<sub>5</sub> nanoparticle Z-Scheme heterojunction, by introducing Nb<sup>4+</sup> ions into Nb<sub>2</sub>O<sub>5</sub> through a reducing atmosphere during C<sub>3</sub>N<sub>4</sub> thermal polymerization. The optimized heterostructure showed outstanding photocatalytic hydrogen evolution activity under both UV–vis (14.93 mmol g<sup>−1</sup> h<sup>−1</sup>) and Vis (5.22 mmol g<sup>−1</sup> h<sup>−1</sup>) lights. The photocatalytic hydrogen evolution activity under UV–vis light is 26.6 and 4.75 times that of bulk C<sub>3</sub>N<sub>4</sub> (CN) and hollow tubular C<sub>3</sub>N<sub>4</sub> (HCN), respectively. The increased photocatalytic activity can be attributed to the larger specific surface area, more active sites, and enhanced light absorption capacity of the composite. Crucially, the introduction of Nb<sup>4+</sup> ions as the charge-carrier transport channels in the Z-scheme heterostructure improves the efficiency of photogenerated charge-carrier separation. This study provides a useful design strategy for Z-Scheme photocatalytic heterojunction structures that can utilize solar light more efficiently.</p></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"46 ","pages":"Article 101523"},"PeriodicalIF":10.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient photocatalytic hydrogen evolution by in situ construction of Nb4+ charge-carrier channels in hollow porous tubular C3N4 and Nb2O5 Z-scheme heterojunctions\",\"authors\":\"Zhaoyu Ma ,&nbsp;Xiafang Jia ,&nbsp;Xiaoxi Song ,&nbsp;Yuxi Xie ,&nbsp;Lijiang Zhao ,&nbsp;Junying Zhang\",\"doi\":\"10.1016/j.mtphys.2024.101523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Optimizing heterojunction structure is an important way to improve photocatalytic activity. Herein, we report a novel hollow tubular C<sub>3</sub>N<sub>4</sub>/Nb<sup>4+</sup>/Nb<sub>2</sub>O<sub>5</sub> nanoparticle Z-Scheme heterojunction, by introducing Nb<sup>4+</sup> ions into Nb<sub>2</sub>O<sub>5</sub> through a reducing atmosphere during C<sub>3</sub>N<sub>4</sub> thermal polymerization. The optimized heterostructure showed outstanding photocatalytic hydrogen evolution activity under both UV–vis (14.93 mmol g<sup>−1</sup> h<sup>−1</sup>) and Vis (5.22 mmol g<sup>−1</sup> h<sup>−1</sup>) lights. The photocatalytic hydrogen evolution activity under UV–vis light is 26.6 and 4.75 times that of bulk C<sub>3</sub>N<sub>4</sub> (CN) and hollow tubular C<sub>3</sub>N<sub>4</sub> (HCN), respectively. The increased photocatalytic activity can be attributed to the larger specific surface area, more active sites, and enhanced light absorption capacity of the composite. Crucially, the introduction of Nb<sup>4+</sup> ions as the charge-carrier transport channels in the Z-scheme heterostructure improves the efficiency of photogenerated charge-carrier separation. This study provides a useful design strategy for Z-Scheme photocatalytic heterojunction structures that can utilize solar light more efficiently.</p></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":\"46 \",\"pages\":\"Article 101523\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542529324001998\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324001998","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

优化异质结结构是提高光催化活性的重要途径。在此,我们报告了一种新型中空管状 C3N4/Nb4+/Nb2O5 纳米粒子 Z-Scheme 异质结,其原理是在 C3N4 热聚合过程中通过还原气氛将 Nb4+ 离子引入 Nb2O5。优化后的异质结构在紫外-可见光(14.93 mmol g-1 h-1)和可见光(5.22 mmol g-1 h-1)条件下均表现出优异的光催化氢气进化活性。紫外-可见光下的光催化氢气进化活性分别是块状 C3N4 (CN) 和空心管状 C3N4 (HCN) 的 26.6 倍和 4.75 倍。光催化活性的提高可归因于复合材料具有更大的比表面积、更多的活性位点以及更强的光吸收能力。最重要的是,在 Z 型异质结构中引入 Nb4+ 离子作为电荷载流子传输通道,提高了光生电荷载流子分离的效率。这项研究为能更有效地利用太阳光的 Z 型光催化异质结结构提供了有用的设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient photocatalytic hydrogen evolution by in situ construction of Nb4+ charge-carrier channels in hollow porous tubular C3N4 and Nb2O5 Z-scheme heterojunctions

Optimizing heterojunction structure is an important way to improve photocatalytic activity. Herein, we report a novel hollow tubular C3N4/Nb4+/Nb2O5 nanoparticle Z-Scheme heterojunction, by introducing Nb4+ ions into Nb2O5 through a reducing atmosphere during C3N4 thermal polymerization. The optimized heterostructure showed outstanding photocatalytic hydrogen evolution activity under both UV–vis (14.93 mmol g−1 h−1) and Vis (5.22 mmol g−1 h−1) lights. The photocatalytic hydrogen evolution activity under UV–vis light is 26.6 and 4.75 times that of bulk C3N4 (CN) and hollow tubular C3N4 (HCN), respectively. The increased photocatalytic activity can be attributed to the larger specific surface area, more active sites, and enhanced light absorption capacity of the composite. Crucially, the introduction of Nb4+ ions as the charge-carrier transport channels in the Z-scheme heterostructure improves the efficiency of photogenerated charge-carrier separation. This study provides a useful design strategy for Z-Scheme photocatalytic heterojunction structures that can utilize solar light more efficiently.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
期刊最新文献
Ultra-soft, foldable, wearable piezoelectric sensor based on the aligned BaTiO3 nanoparticles Mist CVD Technology for Gallium Oxide Deposition: A Review Atomic Imprint Crystallization: Externally-Templated Crystallization of Amorphous Silicon Achieving ultra-high resistivity and outstanding piezoelectric properties by co-substitution in CaBi2Nb2O9 ceramics Data-driven design of thermal-mechanical multifunctional metamaterials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1