HCN:用于超声图像胎儿平面分类的混合胶囊网络

IF 3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Imaging Systems and Technology Pub Date : 2024-07-23 DOI:10.1002/ima.23149
Sourav Kumar Tanwar, Prakash Choudhary,  Priyanka, Tarun Agrawal
{"title":"HCN:用于超声图像胎儿平面分类的混合胶囊网络","authors":"Sourav Kumar Tanwar,&nbsp;Prakash Choudhary,&nbsp; Priyanka,&nbsp;Tarun Agrawal","doi":"10.1002/ima.23149","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Classifying fetal ultrasound images into different anatomical categories, such as the abdomen, brain, femur, thorax, and so forth can contribute to the early identification of potential anomalies or dangers during prenatal care. Ignoring major abnormalities that might lead to fetal death or permanent disability. This article proposes a novel hybrid capsule network architecture-based method for identifying fetal ultrasound images. The proposed architecture increases the precision of fetal image categorization by combining the benefits of a capsule network with a convolutional neural network. The proposed hybrid model surpasses conventional convolutional network-based techniques with an overall accuracy of 0.989 when tested on a publicly accessible dataset of prenatal ultrasound images. The results indicate that the proposed hybrid architecture is a promising approach for precisely and consistently classifying fetal ultrasound images, with potential uses in clinical settings.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HCN: Hybrid Capsule Network for Fetal Plane Classification in Ultrasound Images\",\"authors\":\"Sourav Kumar Tanwar,&nbsp;Prakash Choudhary,&nbsp; Priyanka,&nbsp;Tarun Agrawal\",\"doi\":\"10.1002/ima.23149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Classifying fetal ultrasound images into different anatomical categories, such as the abdomen, brain, femur, thorax, and so forth can contribute to the early identification of potential anomalies or dangers during prenatal care. Ignoring major abnormalities that might lead to fetal death or permanent disability. This article proposes a novel hybrid capsule network architecture-based method for identifying fetal ultrasound images. The proposed architecture increases the precision of fetal image categorization by combining the benefits of a capsule network with a convolutional neural network. The proposed hybrid model surpasses conventional convolutional network-based techniques with an overall accuracy of 0.989 when tested on a publicly accessible dataset of prenatal ultrasound images. The results indicate that the proposed hybrid architecture is a promising approach for precisely and consistently classifying fetal ultrasound images, with potential uses in clinical settings.</p>\\n </div>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"34 4\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.23149\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23149","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

将胎儿超声图像分为不同的解剖类别,如腹部、大脑、股骨、胸部等,有助于在产前检查中及早发现潜在的异常或危险。忽视重大异常可能导致胎儿死亡或终身残疾。本文提出了一种基于混合胶囊网络架构的新型胎儿超声图像识别方法。所提出的架构结合了胶囊网络和卷积神经网络的优点,提高了胎儿图像分类的精确度。在一个公开的产前超声图像数据集上进行测试时,所提出的混合模型超越了传统的基于卷积网络的技术,总体准确率达到 0.989。结果表明,所提出的混合架构是精确、一致地对胎儿超声图像进行分类的一种有前途的方法,在临床环境中具有潜在的用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HCN: Hybrid Capsule Network for Fetal Plane Classification in Ultrasound Images

Classifying fetal ultrasound images into different anatomical categories, such as the abdomen, brain, femur, thorax, and so forth can contribute to the early identification of potential anomalies or dangers during prenatal care. Ignoring major abnormalities that might lead to fetal death or permanent disability. This article proposes a novel hybrid capsule network architecture-based method for identifying fetal ultrasound images. The proposed architecture increases the precision of fetal image categorization by combining the benefits of a capsule network with a convolutional neural network. The proposed hybrid model surpasses conventional convolutional network-based techniques with an overall accuracy of 0.989 when tested on a publicly accessible dataset of prenatal ultrasound images. The results indicate that the proposed hybrid architecture is a promising approach for precisely and consistently classifying fetal ultrasound images, with potential uses in clinical settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Imaging Systems and Technology
International Journal of Imaging Systems and Technology 工程技术-成像科学与照相技术
CiteScore
6.90
自引率
6.10%
发文量
138
审稿时长
3 months
期刊介绍: The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals. IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging. The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered. The scope of the journal includes, but is not limited to, the following in the context of biomedical research: Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.; Neuromodulation and brain stimulation techniques such as TMS and tDCS; Software and hardware for imaging, especially related to human and animal health; Image segmentation in normal and clinical populations; Pattern analysis and classification using machine learning techniques; Computational modeling and analysis; Brain connectivity and connectomics; Systems-level characterization of brain function; Neural networks and neurorobotics; Computer vision, based on human/animal physiology; Brain-computer interface (BCI) technology; Big data, databasing and data mining.
期刊最新文献
Unveiling Cancer: A Data-Driven Approach for Early Identification and Prediction Using F-RUS-RF Model Predicting the Early Detection of Breast Cancer Using Hybrid Machine Learning Systems and Thermographic Imaging CATNet: A Cross Attention and Texture-Aware Network for Polyp Segmentation VMC-UNet: A Vision Mamba-CNN U-Net for Tumor Segmentation in Breast Ultrasound Image Suppression of the Tissue Component With the Total Least-Squares Algorithm to Improve Second Harmonic Imaging of Ultrasound Contrast Agents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1