复合装甲理念(CAP):装甲车辆多层复合防护系统的整体设计方法

IF 5 Q1 ENGINEERING, MULTIDISCIPLINARY Defence Technology(防务技术) Pub Date : 2024-11-01 DOI:10.1016/j.dt.2024.07.009
Evangelos Ch. Tsirogiannis , Foivos Psarommatis , Alexandros Prospathopoulos , Georgios Savaidis
{"title":"复合装甲理念(CAP):装甲车辆多层复合防护系统的整体设计方法","authors":"Evangelos Ch. Tsirogiannis ,&nbsp;Foivos Psarommatis ,&nbsp;Alexandros Prospathopoulos ,&nbsp;Georgios Savaidis","doi":"10.1016/j.dt.2024.07.009","DOIUrl":null,"url":null,"abstract":"<div><div>A philosophy for the design of novel, lightweight, multi-layered armor, referred to as Composite Armor Philosophy (CAP), which can adapt to the passive protection of light-, medium-, and heavy-armored vehicles, is presented in this study. CAP can serve as a guiding principle to assist designers in comprehending the distinct roles fulfilled by each component. The CAP proposal comprises four functional layers, organized in a suggested hierarchy of materials. Particularly notable is the inclusion of a ceramic-composite principle, representing an advanced and innovative solution in the field of armor design. This paper showcases real-world defense industry applications, offering case studies that demonstrate the effectiveness of this advanced approach. CAP represents a significant milestone in the history of passive protection, marking an evolutionary leap in the field. This philosophical approach provides designers with a powerful toolset with which to enhance the protection capabilities of military vehicles, making them more resilient and better equipped to meet the challenges of modern warfare.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"41 ","pages":"Pages 181-197"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composite armor philosophy (CAP): Holistic design methodology of multi-layered composite protection systems for armored vehicles\",\"authors\":\"Evangelos Ch. Tsirogiannis ,&nbsp;Foivos Psarommatis ,&nbsp;Alexandros Prospathopoulos ,&nbsp;Georgios Savaidis\",\"doi\":\"10.1016/j.dt.2024.07.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A philosophy for the design of novel, lightweight, multi-layered armor, referred to as Composite Armor Philosophy (CAP), which can adapt to the passive protection of light-, medium-, and heavy-armored vehicles, is presented in this study. CAP can serve as a guiding principle to assist designers in comprehending the distinct roles fulfilled by each component. The CAP proposal comprises four functional layers, organized in a suggested hierarchy of materials. Particularly notable is the inclusion of a ceramic-composite principle, representing an advanced and innovative solution in the field of armor design. This paper showcases real-world defense industry applications, offering case studies that demonstrate the effectiveness of this advanced approach. CAP represents a significant milestone in the history of passive protection, marking an evolutionary leap in the field. This philosophical approach provides designers with a powerful toolset with which to enhance the protection capabilities of military vehicles, making them more resilient and better equipped to meet the challenges of modern warfare.</div></div>\",\"PeriodicalId\":58209,\"journal\":{\"name\":\"Defence Technology(防务技术)\",\"volume\":\"41 \",\"pages\":\"Pages 181-197\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defence Technology(防务技术)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221491472400179X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Technology(防务技术)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221491472400179X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种新型、轻质、多层装甲的设计理念,即复合装甲理念(CAP),它能适应轻型、中型和重型装甲车辆的被动防护。CAP 可作为一项指导原则,帮助设计人员理解每个组件所发挥的不同作用。CAP 方案包括四个功能层,按照建议的材料层次进行组织。尤其值得注意的是,其中包含了陶瓷复合材料原理,这代表了装甲设计领域的先进和创新解决方案。本文展示了国防工业的实际应用,通过案例研究证明了这种先进方法的有效性。CAP 是被动防护史上的一个重要里程碑,标志着该领域的一次飞跃。这种哲学方法为设计人员提供了一个强大的工具集,可用于增强军用车辆的防护能力,使其更有弹性,更好地应对现代战争的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Composite armor philosophy (CAP): Holistic design methodology of multi-layered composite protection systems for armored vehicles
A philosophy for the design of novel, lightweight, multi-layered armor, referred to as Composite Armor Philosophy (CAP), which can adapt to the passive protection of light-, medium-, and heavy-armored vehicles, is presented in this study. CAP can serve as a guiding principle to assist designers in comprehending the distinct roles fulfilled by each component. The CAP proposal comprises four functional layers, organized in a suggested hierarchy of materials. Particularly notable is the inclusion of a ceramic-composite principle, representing an advanced and innovative solution in the field of armor design. This paper showcases real-world defense industry applications, offering case studies that demonstrate the effectiveness of this advanced approach. CAP represents a significant milestone in the history of passive protection, marking an evolutionary leap in the field. This philosophical approach provides designers with a powerful toolset with which to enhance the protection capabilities of military vehicles, making them more resilient and better equipped to meet the challenges of modern warfare.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Defence Technology(防务技术)
Defence Technology(防务技术) Mechanical Engineering, Control and Systems Engineering, Industrial and Manufacturing Engineering
CiteScore
8.70
自引率
0.00%
发文量
728
审稿时长
25 days
期刊介绍: Defence Technology, a peer reviewed journal, is published monthly and aims to become the best international academic exchange platform for the research related to defence technology. It publishes original research papers having direct bearing on defence, with a balanced coverage on analytical, experimental, numerical simulation and applied investigations. It covers various disciplines of science, technology and engineering.
期刊最新文献
IFC - Editorial Board Analysis model for damage of reinforced bars in RC beams under contact explosion Modelling of internal ballistics of gun systems: A review A tensile wearable SHF antenna with efficient communication in defense beacon technology An isogeometric analysis approach for dynamic response of doubly-curved magneto electro elastic composite shallow shell subjected to blast loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1