用于高性能钠离子电容器阳极的具有扩展层间空间的煤制硼磷共掺杂活性炭

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2024-07-27 DOI:10.1016/j.jcis.2024.07.210
{"title":"用于高性能钠离子电容器阳极的具有扩展层间空间的煤制硼磷共掺杂活性炭","authors":"","doi":"10.1016/j.jcis.2024.07.210","DOIUrl":null,"url":null,"abstract":"<div><p>Aiming at the key problem of Na<sup>+</sup> insertion difficulty and low charge transfer efficiency of activated carbon materials. It is an effective strategy to increase the lattice spacing and defect concentration by doping to reduce the ion diffusion resistance and improve the kinetics. Hence, anthracitic coal is used to prepare activated carbon (AC) and B,P-doped activated carbon (B,P-AC) as the cathode and anode materials for high-performance all-carbon SICs, respectively. AC cathode material has high specific surface area and reasonable micropore structure, which shows excellent capacitance performance. B,P-AC anode material has the advantages of extremely high specific surface area (1856.1 m<sup>2</sup>/g), expanded interlayer spacing (0.40 nm) and uniform distribution of B and P heteroatoms. Hence, B,P-AC anode achieves a highly reversible Na<sup>+</sup> storage capacity of 243 mAh/g at a current density of 0.05 A/g. Density functional theory (DFT) calculations further verify that B,P-AC has stronger Na<sup>+</sup> storage performance. The final assembled B,P-AC//AC SIC offers a high energy density of 109.78 Wh kg<sup>−1</sup> and a high-power density of 10.03 kW kg<sup>−1</sup>. The high-performance coal-derived activated carbon of this work provides a variety of options for industrial production of electrode materials for sodium ion capacitors.</p></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coal-derived boron and phosphorus co-doped activated carbon with expanded interlayer space for high performance sodium ion capacitor anode\",\"authors\":\"\",\"doi\":\"10.1016/j.jcis.2024.07.210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aiming at the key problem of Na<sup>+</sup> insertion difficulty and low charge transfer efficiency of activated carbon materials. It is an effective strategy to increase the lattice spacing and defect concentration by doping to reduce the ion diffusion resistance and improve the kinetics. Hence, anthracitic coal is used to prepare activated carbon (AC) and B,P-doped activated carbon (B,P-AC) as the cathode and anode materials for high-performance all-carbon SICs, respectively. AC cathode material has high specific surface area and reasonable micropore structure, which shows excellent capacitance performance. B,P-AC anode material has the advantages of extremely high specific surface area (1856.1 m<sup>2</sup>/g), expanded interlayer spacing (0.40 nm) and uniform distribution of B and P heteroatoms. Hence, B,P-AC anode achieves a highly reversible Na<sup>+</sup> storage capacity of 243 mAh/g at a current density of 0.05 A/g. Density functional theory (DFT) calculations further verify that B,P-AC has stronger Na<sup>+</sup> storage performance. The final assembled B,P-AC//AC SIC offers a high energy density of 109.78 Wh kg<sup>−1</sup> and a high-power density of 10.03 kW kg<sup>−1</sup>. The high-performance coal-derived activated carbon of this work provides a variety of options for industrial production of electrode materials for sodium ion capacitors.</p></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979724017259\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724017259","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

针对活性炭材料Na+插入困难、电荷转移效率低的关键问题。通过掺杂来增加晶格间距和缺陷浓度,是降低离子扩散阻力、改善动力学性能的有效策略。因此,无烟煤被用来制备活性炭(AC)和掺杂 B,P 的活性炭(B,P-AC),分别作为高性能全碳 SIC 的阴极和阳极材料。AC 阴极材料具有高比表面积和合理的微孔结构,电容性能优异。B,P-AC 阳极材料具有极高的比表面积(1856.1 m2/g)、更大的层间距(0.40 nm)以及 B 和 P 杂原子的均匀分布等优点。因此,B,P-AC 阳极在 0.05 A/g 的电流密度下可实现 243 mAh/g 的高可逆 Na+ 储存容量。密度泛函理论(DFT)计算进一步验证了 B,P-AC 具有更强的 Na+ 储存性能。最终组装的 B,P-AC//AC SIC 具有 109.78 Wh kg-1 的高能量密度和 10.03 kW kg-1 的高功率密度。本研究中的高性能煤质活性炭为钠离子电容器电极材料的工业化生产提供了多种选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coal-derived boron and phosphorus co-doped activated carbon with expanded interlayer space for high performance sodium ion capacitor anode

Aiming at the key problem of Na+ insertion difficulty and low charge transfer efficiency of activated carbon materials. It is an effective strategy to increase the lattice spacing and defect concentration by doping to reduce the ion diffusion resistance and improve the kinetics. Hence, anthracitic coal is used to prepare activated carbon (AC) and B,P-doped activated carbon (B,P-AC) as the cathode and anode materials for high-performance all-carbon SICs, respectively. AC cathode material has high specific surface area and reasonable micropore structure, which shows excellent capacitance performance. B,P-AC anode material has the advantages of extremely high specific surface area (1856.1 m2/g), expanded interlayer spacing (0.40 nm) and uniform distribution of B and P heteroatoms. Hence, B,P-AC anode achieves a highly reversible Na+ storage capacity of 243 mAh/g at a current density of 0.05 A/g. Density functional theory (DFT) calculations further verify that B,P-AC has stronger Na+ storage performance. The final assembled B,P-AC//AC SIC offers a high energy density of 109.78 Wh kg−1 and a high-power density of 10.03 kW kg−1. The high-performance coal-derived activated carbon of this work provides a variety of options for industrial production of electrode materials for sodium ion capacitors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
Synergistic engineering of heterostructure and oxygen vacancy in cobalt hydroxide/aluminum oxyhydroxide as bifunctional electrocatalysts for urea-assisted hydrogen production. Separator engineering: Assisting lithium salt dissociation and constructing LiF-rich solid electrolyte interphases for high-rate lithium metal batteries. Mo2C-Co heterostructure with carbon nanosheets decorated carbon microtubules: Different means for high-performance lithium-sulfur batteries. Multiple-perspective design of hollow-structured cerium-vanadium-based nanopillar arrays for enhanced overall water electrolysis. Mid-gap levels induced near-infrared response and photothermal catalytic degradation of chlortetracycline hydrochloride by (SnFe2)Ox under solar light
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1