Heidi Vanden Brink, Doris Vandeputte, Ilana L Brito, Oline K Ronnekleiv, Mark S Roberson, Alejandro Lomniczi
{"title":"胆汁酸库的变化与女性青春期的时间:下丘脑 TGR5 的潜在新作用。","authors":"Heidi Vanden Brink, Doris Vandeputte, Ilana L Brito, Oline K Ronnekleiv, Mark S Roberson, Alejandro Lomniczi","doi":"10.1210/endocr/bqae098","DOIUrl":null,"url":null,"abstract":"<p><strong>Context: </strong>The regulation of pubertal timing and reproductive axis maturation is influenced by a myriad of physiologic and environmental inputs yet remains incompletely understood.</p><p><strong>Objective: </strong>To contrast differences in bile acid isoform profiles across defined stages of reproductive maturity in humans and a rat model of puberty and to characterize the role of bile acid signaling via hypothalamic expression of bile acid receptor populations in the rodent model.</p><p><strong>Methods: </strong>Secondary analysis and pilot studies of clinical cohorts, rodent models, ex vivo analyses of rodent hypothalamic tissues. Bile acid concentrations is the main outcome measure.</p><p><strong>Results: </strong>Lower circulatory conjugated:deconjugated bile acid concentrations and higher total secondary bile acids were observed in postmenarcheal vs pre-/early pubertal adolescents, with similar shifts observed in infantile (postnatal day [PN]14) vs early juvenile (PN21) rats alongside increased tgr5 receptor mRNA expression within the mediobasal hypothalamus of female rats. 16S rRNA gene sequencing of the rodent gut microbiome across postnatal life revealed changes in the gut microbial composition predicted to have bile salt hydrolase activity, which was observed in parallel with the increased deconjugated and increased concentrations of secondary bile acids. We show that TGR5-stimulated GnRH release from hypothalamic explants is mediated through kisspeptin receptors and that early overexpression of human-TGR5 within the arcuate nucleus accelerates pubertal onset in female rats.</p><p><strong>Conclusion: </strong>Bile acid isoform shifts along stages of reproductive maturation are conserved across rodents and humans, with preclinical models providing mechanistic insight for the neuroendocrine-hepatic-gut microbiome axis as a potential moderator of pubertal timing in females.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334072/pdf/","citationCount":"0","resultStr":"{\"title\":\"Changes in the Bile Acid Pool and Timing of Female Puberty: Potential Novel Role of Hypothalamic TGR5.\",\"authors\":\"Heidi Vanden Brink, Doris Vandeputte, Ilana L Brito, Oline K Ronnekleiv, Mark S Roberson, Alejandro Lomniczi\",\"doi\":\"10.1210/endocr/bqae098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Context: </strong>The regulation of pubertal timing and reproductive axis maturation is influenced by a myriad of physiologic and environmental inputs yet remains incompletely understood.</p><p><strong>Objective: </strong>To contrast differences in bile acid isoform profiles across defined stages of reproductive maturity in humans and a rat model of puberty and to characterize the role of bile acid signaling via hypothalamic expression of bile acid receptor populations in the rodent model.</p><p><strong>Methods: </strong>Secondary analysis and pilot studies of clinical cohorts, rodent models, ex vivo analyses of rodent hypothalamic tissues. Bile acid concentrations is the main outcome measure.</p><p><strong>Results: </strong>Lower circulatory conjugated:deconjugated bile acid concentrations and higher total secondary bile acids were observed in postmenarcheal vs pre-/early pubertal adolescents, with similar shifts observed in infantile (postnatal day [PN]14) vs early juvenile (PN21) rats alongside increased tgr5 receptor mRNA expression within the mediobasal hypothalamus of female rats. 16S rRNA gene sequencing of the rodent gut microbiome across postnatal life revealed changes in the gut microbial composition predicted to have bile salt hydrolase activity, which was observed in parallel with the increased deconjugated and increased concentrations of secondary bile acids. We show that TGR5-stimulated GnRH release from hypothalamic explants is mediated through kisspeptin receptors and that early overexpression of human-TGR5 within the arcuate nucleus accelerates pubertal onset in female rats.</p><p><strong>Conclusion: </strong>Bile acid isoform shifts along stages of reproductive maturation are conserved across rodents and humans, with preclinical models providing mechanistic insight for the neuroendocrine-hepatic-gut microbiome axis as a potential moderator of pubertal timing in females.</p>\",\"PeriodicalId\":11819,\"journal\":{\"name\":\"Endocrinology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334072/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1210/endocr/bqae098\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/endocr/bqae098","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Changes in the Bile Acid Pool and Timing of Female Puberty: Potential Novel Role of Hypothalamic TGR5.
Context: The regulation of pubertal timing and reproductive axis maturation is influenced by a myriad of physiologic and environmental inputs yet remains incompletely understood.
Objective: To contrast differences in bile acid isoform profiles across defined stages of reproductive maturity in humans and a rat model of puberty and to characterize the role of bile acid signaling via hypothalamic expression of bile acid receptor populations in the rodent model.
Methods: Secondary analysis and pilot studies of clinical cohorts, rodent models, ex vivo analyses of rodent hypothalamic tissues. Bile acid concentrations is the main outcome measure.
Results: Lower circulatory conjugated:deconjugated bile acid concentrations and higher total secondary bile acids were observed in postmenarcheal vs pre-/early pubertal adolescents, with similar shifts observed in infantile (postnatal day [PN]14) vs early juvenile (PN21) rats alongside increased tgr5 receptor mRNA expression within the mediobasal hypothalamus of female rats. 16S rRNA gene sequencing of the rodent gut microbiome across postnatal life revealed changes in the gut microbial composition predicted to have bile salt hydrolase activity, which was observed in parallel with the increased deconjugated and increased concentrations of secondary bile acids. We show that TGR5-stimulated GnRH release from hypothalamic explants is mediated through kisspeptin receptors and that early overexpression of human-TGR5 within the arcuate nucleus accelerates pubertal onset in female rats.
Conclusion: Bile acid isoform shifts along stages of reproductive maturation are conserved across rodents and humans, with preclinical models providing mechanistic insight for the neuroendocrine-hepatic-gut microbiome axis as a potential moderator of pubertal timing in females.
期刊介绍:
The mission of Endocrinology is to be the authoritative source of emerging hormone science and to disseminate that new knowledge to scientists, clinicians, and the public in a way that will enable "hormone science to health." Endocrinology welcomes the submission of original research investigating endocrine systems and diseases at all levels of biological organization, incorporating molecular mechanistic studies, such as hormone-receptor interactions, in all areas of endocrinology, as well as cross-disciplinary and integrative studies. The editors of Endocrinology encourage the submission of research in emerging areas not traditionally recognized as endocrinology or metabolism in addition to the following traditionally recognized fields: Adrenal; Bone Health and Osteoporosis; Cardiovascular Endocrinology; Diabetes; Endocrine-Disrupting Chemicals; Endocrine Neoplasia and Cancer; Growth; Neuroendocrinology; Nuclear Receptors and Their Ligands; Obesity; Reproductive Endocrinology; Signaling Pathways; and Thyroid.