Hui Zhang, Peiyi Wang, Yitong Song, Huanhuan Zhao, Quan Zuo, Xi Chen, Fangxu Han, Hongmei Liu, Yumeng Nie, Meiqin Liu, Meina Guo, Shihui Niu
{"title":"DAL10 是针叶树假定的 DAL1 介导的年龄途径的直接靶标。","authors":"Hui Zhang, Peiyi Wang, Yitong Song, Huanhuan Zhao, Quan Zuo, Xi Chen, Fangxu Han, Hongmei Liu, Yumeng Nie, Meiqin Liu, Meina Guo, Shihui Niu","doi":"10.1093/jxb/erae329","DOIUrl":null,"url":null,"abstract":"<p><p>The optimal timing of the transition from vegetative growth to reproductive growth is critical for plant reproductive success, and the underlying regulatory mechanisms have been well studied in angiosperm model species, but relatively little in gymnosperms. DAL1, a MADS domain transcription factor (TF) that shows a conserved age-related expression profile in conifers, may be an age timer. However, how DAL1 mediates the onset of reproductive growth remains poorly understood. Here, we showed that PtDAL1 directly regulates PtDAL10 transcription by binding to its promoter region in vitro. Both in vitro and in Nicotiana benthamiana PtDAL1 forms ternary complexes with PtDAL10 and PtMADS11, two potential candidate regulators of the vegetative to reproductive transition in Chinese pine (Pinus tabuliformis). In new shoots PtDAL10 was progressively induced with age and was also expressed in male and female cones. Overexpression of PtDAL10 rescued the flowering of ft-10 and soc1-1-2 mutants in Arabidopsis. We provide insights into the molecular components associated with PtDAL1, which integrates the vegetative to reproductive phase transition into age-mediated progressive development of the whole plant in conifers.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"6462-6475"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The MADS-domain transcription factor DAL10 is a direct target of putative DAL1-mediated age pathway in conifers.\",\"authors\":\"Hui Zhang, Peiyi Wang, Yitong Song, Huanhuan Zhao, Quan Zuo, Xi Chen, Fangxu Han, Hongmei Liu, Yumeng Nie, Meiqin Liu, Meina Guo, Shihui Niu\",\"doi\":\"10.1093/jxb/erae329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The optimal timing of the transition from vegetative growth to reproductive growth is critical for plant reproductive success, and the underlying regulatory mechanisms have been well studied in angiosperm model species, but relatively little in gymnosperms. DAL1, a MADS domain transcription factor (TF) that shows a conserved age-related expression profile in conifers, may be an age timer. However, how DAL1 mediates the onset of reproductive growth remains poorly understood. Here, we showed that PtDAL1 directly regulates PtDAL10 transcription by binding to its promoter region in vitro. Both in vitro and in Nicotiana benthamiana PtDAL1 forms ternary complexes with PtDAL10 and PtMADS11, two potential candidate regulators of the vegetative to reproductive transition in Chinese pine (Pinus tabuliformis). In new shoots PtDAL10 was progressively induced with age and was also expressed in male and female cones. Overexpression of PtDAL10 rescued the flowering of ft-10 and soc1-1-2 mutants in Arabidopsis. We provide insights into the molecular components associated with PtDAL1, which integrates the vegetative to reproductive phase transition into age-mediated progressive development of the whole plant in conifers.</p>\",\"PeriodicalId\":15820,\"journal\":{\"name\":\"Journal of Experimental Botany\",\"volume\":\" \",\"pages\":\"6462-6475\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jxb/erae329\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/erae329","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
The MADS-domain transcription factor DAL10 is a direct target of putative DAL1-mediated age pathway in conifers.
The optimal timing of the transition from vegetative growth to reproductive growth is critical for plant reproductive success, and the underlying regulatory mechanisms have been well studied in angiosperm model species, but relatively little in gymnosperms. DAL1, a MADS domain transcription factor (TF) that shows a conserved age-related expression profile in conifers, may be an age timer. However, how DAL1 mediates the onset of reproductive growth remains poorly understood. Here, we showed that PtDAL1 directly regulates PtDAL10 transcription by binding to its promoter region in vitro. Both in vitro and in Nicotiana benthamiana PtDAL1 forms ternary complexes with PtDAL10 and PtMADS11, two potential candidate regulators of the vegetative to reproductive transition in Chinese pine (Pinus tabuliformis). In new shoots PtDAL10 was progressively induced with age and was also expressed in male and female cones. Overexpression of PtDAL10 rescued the flowering of ft-10 and soc1-1-2 mutants in Arabidopsis. We provide insights into the molecular components associated with PtDAL1, which integrates the vegetative to reproductive phase transition into age-mediated progressive development of the whole plant in conifers.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.