Cailbhe Doherty, Maximus Baldwin, Alison Keogh, Brian Caulfield, Rob Argent
{"title":"与可穿戴设备同步:评估消费类可穿戴技术在健康测量中的准确性的系统性综述。","authors":"Cailbhe Doherty, Maximus Baldwin, Alison Keogh, Brian Caulfield, Rob Argent","doi":"10.1007/s40279-024-02077-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Consumer wearable technologies have become ubiquitous, with clinical and non-clinical populations leveraging a variety of devices to quantify various aspects of health and wellness. However, the accuracy with which these devices measure biometric outcomes such as heart rate, sleep and physical activity remains unclear.</p><p><strong>Objective: </strong>To conduct a 'living' (i.e. ongoing) evaluation of the accuracy of consumer wearable technologies in measuring various physiological outcomes.</p><p><strong>Methods: </strong>A systematic search of the literature was conducted in the following scientific databases: MEDLINE via PubMed, Embase, Cinahl and SPORTDiscus via EBSCO. The inclusion criteria required systematic reviews or meta-analyses that evaluated the validation of consumer wearable devices against accepted reference standards. In addition to publication details, review protocol, device specifics and a summary of the authors' results, we extracted data on mean absolute percentage error (MAPE), pooled absolute bias, intraclass correlation coefficients (ICCs) and mean absolute differences.</p><p><strong>Results: </strong>Of 904 identified studies through the initial search, 24 systematic reviews met our inclusion criteria; these systematic reviews included 249 non-duplicate validation studies of consumer wearable devices involving 430,465 participants (43% female). Of the commercially available wearable devices released to date, approximately 11% have been validated for at least one biometric outcome. However, because a typical device can measure a multitude of biometric outcomes, the number of validation studies conducted represents just 3.5% of the total needed for a comprehensive evaluation of these devices. For heart rate, wearables showed a mean bias of ± 3%. In arrhythmia detection, wearables exhibited a pooled sensitivity and specificity of 100% and 95%, respectively. For aerobic capacity, wearables significantly overestimated VO<sub>2max</sub> by ± 15.24% during resting tests and ± 9.83% during exercise tests. Physical activity intensity measurements had a mean absolute error ranging from 29 to 80%, depending on the intensity of the activity being undertaken. Wearables mostly underestimated step counts (mean absolute percentage errors ranging from - 9 to 12%) and energy expenditure (mean bias = - 3 kcal per minute, or - 3%, with error ranging from - 21.27 to 14.76%). For blood oxygen saturation, wearables showed a mean absolute difference of up to 2.0%. Sleep measurement showed a tendency to overestimate total sleep time (mean absolute percentage error typically > 10%).</p><p><strong>Conclusions: </strong>While consumer wearables show promise in health monitoring, a conclusive assessment of their accuracy is impeded by pervasive heterogeneity in research outcomes and methodologies. There is a need for standardised validation protocols and collaborative industry partnerships to enhance the reliability and practical applicability of wearable technology assessments.</p><p><strong>Prospero id: </strong>CRD42023402703.</p>","PeriodicalId":21969,"journal":{"name":"Sports Medicine","volume":null,"pages":null},"PeriodicalIF":9.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Keeping Pace with Wearables: A Living Umbrella Review of Systematic Reviews Evaluating the Accuracy of Consumer Wearable Technologies in Health Measurement.\",\"authors\":\"Cailbhe Doherty, Maximus Baldwin, Alison Keogh, Brian Caulfield, Rob Argent\",\"doi\":\"10.1007/s40279-024-02077-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Consumer wearable technologies have become ubiquitous, with clinical and non-clinical populations leveraging a variety of devices to quantify various aspects of health and wellness. However, the accuracy with which these devices measure biometric outcomes such as heart rate, sleep and physical activity remains unclear.</p><p><strong>Objective: </strong>To conduct a 'living' (i.e. ongoing) evaluation of the accuracy of consumer wearable technologies in measuring various physiological outcomes.</p><p><strong>Methods: </strong>A systematic search of the literature was conducted in the following scientific databases: MEDLINE via PubMed, Embase, Cinahl and SPORTDiscus via EBSCO. The inclusion criteria required systematic reviews or meta-analyses that evaluated the validation of consumer wearable devices against accepted reference standards. In addition to publication details, review protocol, device specifics and a summary of the authors' results, we extracted data on mean absolute percentage error (MAPE), pooled absolute bias, intraclass correlation coefficients (ICCs) and mean absolute differences.</p><p><strong>Results: </strong>Of 904 identified studies through the initial search, 24 systematic reviews met our inclusion criteria; these systematic reviews included 249 non-duplicate validation studies of consumer wearable devices involving 430,465 participants (43% female). Of the commercially available wearable devices released to date, approximately 11% have been validated for at least one biometric outcome. However, because a typical device can measure a multitude of biometric outcomes, the number of validation studies conducted represents just 3.5% of the total needed for a comprehensive evaluation of these devices. For heart rate, wearables showed a mean bias of ± 3%. In arrhythmia detection, wearables exhibited a pooled sensitivity and specificity of 100% and 95%, respectively. For aerobic capacity, wearables significantly overestimated VO<sub>2max</sub> by ± 15.24% during resting tests and ± 9.83% during exercise tests. Physical activity intensity measurements had a mean absolute error ranging from 29 to 80%, depending on the intensity of the activity being undertaken. Wearables mostly underestimated step counts (mean absolute percentage errors ranging from - 9 to 12%) and energy expenditure (mean bias = - 3 kcal per minute, or - 3%, with error ranging from - 21.27 to 14.76%). For blood oxygen saturation, wearables showed a mean absolute difference of up to 2.0%. Sleep measurement showed a tendency to overestimate total sleep time (mean absolute percentage error typically > 10%).</p><p><strong>Conclusions: </strong>While consumer wearables show promise in health monitoring, a conclusive assessment of their accuracy is impeded by pervasive heterogeneity in research outcomes and methodologies. There is a need for standardised validation protocols and collaborative industry partnerships to enhance the reliability and practical applicability of wearable technology assessments.</p><p><strong>Prospero id: </strong>CRD42023402703.</p>\",\"PeriodicalId\":21969,\"journal\":{\"name\":\"Sports Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sports Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s40279-024-02077-2\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"SPORT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40279-024-02077-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
Keeping Pace with Wearables: A Living Umbrella Review of Systematic Reviews Evaluating the Accuracy of Consumer Wearable Technologies in Health Measurement.
Background: Consumer wearable technologies have become ubiquitous, with clinical and non-clinical populations leveraging a variety of devices to quantify various aspects of health and wellness. However, the accuracy with which these devices measure biometric outcomes such as heart rate, sleep and physical activity remains unclear.
Objective: To conduct a 'living' (i.e. ongoing) evaluation of the accuracy of consumer wearable technologies in measuring various physiological outcomes.
Methods: A systematic search of the literature was conducted in the following scientific databases: MEDLINE via PubMed, Embase, Cinahl and SPORTDiscus via EBSCO. The inclusion criteria required systematic reviews or meta-analyses that evaluated the validation of consumer wearable devices against accepted reference standards. In addition to publication details, review protocol, device specifics and a summary of the authors' results, we extracted data on mean absolute percentage error (MAPE), pooled absolute bias, intraclass correlation coefficients (ICCs) and mean absolute differences.
Results: Of 904 identified studies through the initial search, 24 systematic reviews met our inclusion criteria; these systematic reviews included 249 non-duplicate validation studies of consumer wearable devices involving 430,465 participants (43% female). Of the commercially available wearable devices released to date, approximately 11% have been validated for at least one biometric outcome. However, because a typical device can measure a multitude of biometric outcomes, the number of validation studies conducted represents just 3.5% of the total needed for a comprehensive evaluation of these devices. For heart rate, wearables showed a mean bias of ± 3%. In arrhythmia detection, wearables exhibited a pooled sensitivity and specificity of 100% and 95%, respectively. For aerobic capacity, wearables significantly overestimated VO2max by ± 15.24% during resting tests and ± 9.83% during exercise tests. Physical activity intensity measurements had a mean absolute error ranging from 29 to 80%, depending on the intensity of the activity being undertaken. Wearables mostly underestimated step counts (mean absolute percentage errors ranging from - 9 to 12%) and energy expenditure (mean bias = - 3 kcal per minute, or - 3%, with error ranging from - 21.27 to 14.76%). For blood oxygen saturation, wearables showed a mean absolute difference of up to 2.0%. Sleep measurement showed a tendency to overestimate total sleep time (mean absolute percentage error typically > 10%).
Conclusions: While consumer wearables show promise in health monitoring, a conclusive assessment of their accuracy is impeded by pervasive heterogeneity in research outcomes and methodologies. There is a need for standardised validation protocols and collaborative industry partnerships to enhance the reliability and practical applicability of wearable technology assessments.
期刊介绍:
Sports Medicine focuses on providing definitive and comprehensive review articles that interpret and evaluate current literature, aiming to offer insights into research findings in the sports medicine and exercise field. The journal covers major topics such as sports medicine and sports science, medical syndromes associated with sport and exercise, clinical medicine's role in injury prevention and treatment, exercise for rehabilitation and health, and the application of physiological and biomechanical principles to specific sports.
Types of Articles:
Review Articles: Definitive and comprehensive reviews that interpret and evaluate current literature to provide rationale for and application of research findings.
Leading/Current Opinion Articles: Overviews of contentious or emerging issues in the field.
Original Research Articles: High-quality research articles.
Enhanced Features: Additional features like slide sets, videos, and animations aimed at increasing the visibility, readership, and educational value of the journal's content.
Plain Language Summaries: Summaries accompanying articles to assist readers in understanding important medical advances.
Peer Review Process:
All manuscripts undergo peer review by international experts to ensure quality and rigor. The journal also welcomes Letters to the Editor, which will be considered for publication.