将放射组学作为抗PD-1 mAb治疗的复发性/转移性头颈部鳞状细胞癌患者疗效和肿瘤免疫微环境的预测指标进行评估。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-07-30 DOI:10.1002/hed.27878
Dan P Zandberg, Serafettin Zenkin, Murat Ak, Priyadarshini Mamindla, Vishal Peddagangireddy, Ronan Hsieh, Jennifer L Anderson, Greg M Delgoffe, Ashely Menk, Heath D Skinner, Umamaheswar Duvvuri, Robert L Ferris, Rivka R Colen
{"title":"将放射组学作为抗PD-1 mAb治疗的复发性/转移性头颈部鳞状细胞癌患者疗效和肿瘤免疫微环境的预测指标进行评估。","authors":"Dan P Zandberg, Serafettin Zenkin, Murat Ak, Priyadarshini Mamindla, Vishal Peddagangireddy, Ronan Hsieh, Jennifer L Anderson, Greg M Delgoffe, Ashely Menk, Heath D Skinner, Umamaheswar Duvvuri, Robert L Ferris, Rivka R Colen","doi":"10.1002/hed.27878","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>We retrospectively evaluated radiomics as a predictor of the tumor microenvironment (TME) and efficacy with anti-PD-1 mAb (IO) in R/M HNSCC.</p><p><strong>Methods: </strong>Radiomic feature extraction was performed on pre-treatment CT scans segmented using 3D slicer v4.10.2 and key features were selected using LASSO regularization method to build classification models with XGBoost algorithm by incorporating cross-validation techniques to calculate accuracy, sensitivity, and specificity. Outcome measures evaluated were disease control rate (DCR) by RECIST 1.1, PFS, and OS and hypoxia and CD8 T cells in the TME.</p><p><strong>Results: </strong>Radiomics features predicted DCR with accuracy, sensitivity, and specificity of 76%, 73%, and 83%, for OS 77%, 86%, 70%, PFS 82%, 75%, 89%, and in the TME, for high hypoxia 80%, 88%, and 72% and high CD8 T cells 91%, 83%, and 100%, respectively.</p><p><strong>Conclusion: </strong>Radiomics accurately predicted the efficacy of IO and features of the TME in R/M HNSCC. Further study in a larger patient population is warranted.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of radiomics as a predictor of efficacy and the tumor immune microenvironment in anti-PD-1 mAb treated recurrent/metastatic squamous cell carcinoma of the head and neck patients.\",\"authors\":\"Dan P Zandberg, Serafettin Zenkin, Murat Ak, Priyadarshini Mamindla, Vishal Peddagangireddy, Ronan Hsieh, Jennifer L Anderson, Greg M Delgoffe, Ashely Menk, Heath D Skinner, Umamaheswar Duvvuri, Robert L Ferris, Rivka R Colen\",\"doi\":\"10.1002/hed.27878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>We retrospectively evaluated radiomics as a predictor of the tumor microenvironment (TME) and efficacy with anti-PD-1 mAb (IO) in R/M HNSCC.</p><p><strong>Methods: </strong>Radiomic feature extraction was performed on pre-treatment CT scans segmented using 3D slicer v4.10.2 and key features were selected using LASSO regularization method to build classification models with XGBoost algorithm by incorporating cross-validation techniques to calculate accuracy, sensitivity, and specificity. Outcome measures evaluated were disease control rate (DCR) by RECIST 1.1, PFS, and OS and hypoxia and CD8 T cells in the TME.</p><p><strong>Results: </strong>Radiomics features predicted DCR with accuracy, sensitivity, and specificity of 76%, 73%, and 83%, for OS 77%, 86%, 70%, PFS 82%, 75%, 89%, and in the TME, for high hypoxia 80%, 88%, and 72% and high CD8 T cells 91%, 83%, and 100%, respectively.</p><p><strong>Conclusion: </strong>Radiomics accurately predicted the efficacy of IO and features of the TME in R/M HNSCC. Further study in a larger patient population is warranted.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/hed.27878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/hed.27878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

背景:我们回顾性地评估了放射组学作为肿瘤微环境(TME)和抗PD-1 mAb(IO)对R/M HNSCC疗效的预测指标:使用三维切片器 v4.10.2 对治疗前 CT 扫描图像进行放射组学特征提取,并使用 LASSO 正则化方法选择关键特征,结合交叉验证技术使用 XGBoost 算法建立分类模型,计算准确率、灵敏度和特异性。评估的结果指标包括RECIST 1.1的疾病控制率(DCR)、PFS、OS以及TME中的缺氧和CD8 T细胞:放射组学特征预测疾病控制率的准确性、灵敏度和特异性分别为76%、73%和83%,预测OS的准确性、灵敏度和特异性分别为77%、86%和70%,预测PFS的准确性、灵敏度和特异性分别为82%、75%和89%,预测TME中高缺氧的准确性、灵敏度和特异性分别为80%、88%和72%,预测高CD8 T细胞的准确性、灵敏度和特异性分别为91%、83%和100%:放射组学准确预测了IO的疗效和R/M HNSCC的TME特征。有必要在更大的患者群体中开展进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of radiomics as a predictor of efficacy and the tumor immune microenvironment in anti-PD-1 mAb treated recurrent/metastatic squamous cell carcinoma of the head and neck patients.

Background: We retrospectively evaluated radiomics as a predictor of the tumor microenvironment (TME) and efficacy with anti-PD-1 mAb (IO) in R/M HNSCC.

Methods: Radiomic feature extraction was performed on pre-treatment CT scans segmented using 3D slicer v4.10.2 and key features were selected using LASSO regularization method to build classification models with XGBoost algorithm by incorporating cross-validation techniques to calculate accuracy, sensitivity, and specificity. Outcome measures evaluated were disease control rate (DCR) by RECIST 1.1, PFS, and OS and hypoxia and CD8 T cells in the TME.

Results: Radiomics features predicted DCR with accuracy, sensitivity, and specificity of 76%, 73%, and 83%, for OS 77%, 86%, 70%, PFS 82%, 75%, 89%, and in the TME, for high hypoxia 80%, 88%, and 72% and high CD8 T cells 91%, 83%, and 100%, respectively.

Conclusion: Radiomics accurately predicted the efficacy of IO and features of the TME in R/M HNSCC. Further study in a larger patient population is warranted.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1