{"title":"神经网络模型中的神经波和计算 II:类似数据的结构和外显记忆的动态变化。","authors":"Stephen Selesnick","doi":"10.1007/s10827-024-00876-0","DOIUrl":null,"url":null,"abstract":"<p><p>The computational resources of a neuromorphic network model introduced earlier were investigated in the first paper of this series. It was argued that a form of ubiquitous spontaneous local convolution enabled logical gate-like neural motifs to form into hierarchical feed-forward structures of the Hubel-Wiesel type. Here we investigate concomitant data-like structures and their dynamic rôle in memory formation, retrieval, and replay. The mechanisms give rise to the need for general inhibitory sculpting, and the simulation of the replay of episodic memories, well known in humans and recently observed in rats. Other consequences include explanations of such findings as the directional flows of neural waves in memory formation and retrieval, visual anomalies and memory deficits in schizophrenia, and the operation of GABA agonist drugs in suppressing episodic memories. We put forward the hypothesis that all neural logical operations and feature extractions are of the convolutional hierarchical type described here and in the earlier paper, and exemplified by the Hubel-Wiesel model of the visual cortex, but that in more general cases the precise geometric layering might be obscured and so far undetected.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":" ","pages":"223-243"},"PeriodicalIF":1.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural waves and computation in a neural net model II: Data-like structures and the dynamics of episodic memory.\",\"authors\":\"Stephen Selesnick\",\"doi\":\"10.1007/s10827-024-00876-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The computational resources of a neuromorphic network model introduced earlier were investigated in the first paper of this series. It was argued that a form of ubiquitous spontaneous local convolution enabled logical gate-like neural motifs to form into hierarchical feed-forward structures of the Hubel-Wiesel type. Here we investigate concomitant data-like structures and their dynamic rôle in memory formation, retrieval, and replay. The mechanisms give rise to the need for general inhibitory sculpting, and the simulation of the replay of episodic memories, well known in humans and recently observed in rats. Other consequences include explanations of such findings as the directional flows of neural waves in memory formation and retrieval, visual anomalies and memory deficits in schizophrenia, and the operation of GABA agonist drugs in suppressing episodic memories. We put forward the hypothesis that all neural logical operations and feature extractions are of the convolutional hierarchical type described here and in the earlier paper, and exemplified by the Hubel-Wiesel model of the visual cortex, but that in more general cases the precise geometric layering might be obscured and so far undetected.</p>\",\"PeriodicalId\":54857,\"journal\":{\"name\":\"Journal of Computational Neuroscience\",\"volume\":\" \",\"pages\":\"223-243\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10827-024-00876-0\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10827-024-00876-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Neural waves and computation in a neural net model II: Data-like structures and the dynamics of episodic memory.
The computational resources of a neuromorphic network model introduced earlier were investigated in the first paper of this series. It was argued that a form of ubiquitous spontaneous local convolution enabled logical gate-like neural motifs to form into hierarchical feed-forward structures of the Hubel-Wiesel type. Here we investigate concomitant data-like structures and their dynamic rôle in memory formation, retrieval, and replay. The mechanisms give rise to the need for general inhibitory sculpting, and the simulation of the replay of episodic memories, well known in humans and recently observed in rats. Other consequences include explanations of such findings as the directional flows of neural waves in memory formation and retrieval, visual anomalies and memory deficits in schizophrenia, and the operation of GABA agonist drugs in suppressing episodic memories. We put forward the hypothesis that all neural logical operations and feature extractions are of the convolutional hierarchical type described here and in the earlier paper, and exemplified by the Hubel-Wiesel model of the visual cortex, but that in more general cases the precise geometric layering might be obscured and so far undetected.
期刊介绍:
The Journal of Computational Neuroscience provides a forum for papers that fit the interface between computational and experimental work in the neurosciences. The Journal of Computational Neuroscience publishes full length original papers, rapid communications and review articles describing theoretical and experimental work relevant to computations in the brain and nervous system. Papers that combine theoretical and experimental work are especially encouraged. Primarily theoretical papers should deal with issues of obvious relevance to biological nervous systems. Experimental papers should have implications for the computational function of the nervous system, and may report results using any of a variety of approaches including anatomy, electrophysiology, biophysics, imaging, and molecular biology. Papers investigating the physiological mechanisms underlying pathologies of the nervous system, or papers that report novel technologies of interest to researchers in computational neuroscience, including advances in neural data analysis methods yielding insights into the function of the nervous system, are also welcomed (in this case, methodological papers should include an application of the new method, exemplifying the insights that it yields).It is anticipated that all levels of analysis from cognitive to cellular will be represented in the Journal of Computational Neuroscience.