具有非高斯(或非高斯)扰动的声耗散产生的频谱失真

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Journal of Cosmology and Astroparticle Physics Pub Date : 2024-07-30 DOI:10.1088/1475-7516/2024/07/090
Devanshu Sharma, Julien Lesgourgues and Christian T. Byrnes
{"title":"具有非高斯(或非高斯)扰动的声耗散产生的频谱失真","authors":"Devanshu Sharma, Julien Lesgourgues and Christian T. Byrnes","doi":"10.1088/1475-7516/2024/07/090","DOIUrl":null,"url":null,"abstract":"A well-known route to form primordial black holes in the early universe relies on the existence of unusually large primordial curvature fluctuations, confined to a narrow range of wavelengths that would be too small to be constrained by Cosmic Microwave Background (CMB) anisotropies. This scenario would however boost the generation of μ-type spectral distortions in the CMB due to an enhanced dissipation of acoustic waves. Previous studies of μ-distortion bounds on the primordial spectrum were based on the assumptions of Gaussian primordial fluctuations. In this work, we push the calculation of μ-distortions to one higher order in photon anisotropies. We discuss how to derive bounds on primordial spectrum peaks obeying non-Gaussian statistics under the assumption of local (perturbative or not) non-Gaussianity. We find that, depending on the value of the peak scale, the bounds may either remain stable or get tighter by several orders of magnitude, but only when the departure from Gaussian statistics is very strong. Our results are translated in terms of bounds on primordial supermassive black hole mass in a companion paper.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral distortions from acoustic dissipation with non-Gaussian (or not) perturbations\",\"authors\":\"Devanshu Sharma, Julien Lesgourgues and Christian T. Byrnes\",\"doi\":\"10.1088/1475-7516/2024/07/090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A well-known route to form primordial black holes in the early universe relies on the existence of unusually large primordial curvature fluctuations, confined to a narrow range of wavelengths that would be too small to be constrained by Cosmic Microwave Background (CMB) anisotropies. This scenario would however boost the generation of μ-type spectral distortions in the CMB due to an enhanced dissipation of acoustic waves. Previous studies of μ-distortion bounds on the primordial spectrum were based on the assumptions of Gaussian primordial fluctuations. In this work, we push the calculation of μ-distortions to one higher order in photon anisotropies. We discuss how to derive bounds on primordial spectrum peaks obeying non-Gaussian statistics under the assumption of local (perturbative or not) non-Gaussianity. We find that, depending on the value of the peak scale, the bounds may either remain stable or get tighter by several orders of magnitude, but only when the departure from Gaussian statistics is very strong. Our results are translated in terms of bounds on primordial supermassive black hole mass in a companion paper.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2024/07/090\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/07/090","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在早期宇宙中形成原始黑洞的一个众所周知的途径依赖于异常巨大的原始曲率波动的存在,这种波动被限制在一个狭窄的波长范围内,由于波长太小而无法受到宇宙微波背景(CMB)各向异性的约束。然而,由于声波耗散的增强,这种情况会促进在 CMB 中产生 μ 型光谱畸变。以前对原始频谱μ-畸变边界的研究都是基于高斯原始波动的假设。在这项工作中,我们将μ-失真计算推进到光子各向异性的更高阶。我们讨论了如何在局部(微扰或非微扰)非高斯统计的假设下,推导出服从非高斯统计的原始谱峰的边界。我们发现,根据峰值尺度的不同,边界要么保持稳定,要么收紧几个数量级,但只有当偏离高斯统计非常强烈时才会如此。我们的结果将在另一篇论文中转化为原始超大质量黑洞质量的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spectral distortions from acoustic dissipation with non-Gaussian (or not) perturbations
A well-known route to form primordial black holes in the early universe relies on the existence of unusually large primordial curvature fluctuations, confined to a narrow range of wavelengths that would be too small to be constrained by Cosmic Microwave Background (CMB) anisotropies. This scenario would however boost the generation of μ-type spectral distortions in the CMB due to an enhanced dissipation of acoustic waves. Previous studies of μ-distortion bounds on the primordial spectrum were based on the assumptions of Gaussian primordial fluctuations. In this work, we push the calculation of μ-distortions to one higher order in photon anisotropies. We discuss how to derive bounds on primordial spectrum peaks obeying non-Gaussian statistics under the assumption of local (perturbative or not) non-Gaussianity. We find that, depending on the value of the peak scale, the bounds may either remain stable or get tighter by several orders of magnitude, but only when the departure from Gaussian statistics is very strong. Our results are translated in terms of bounds on primordial supermassive black hole mass in a companion paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
期刊最新文献
Dust in high-redshift galaxies: reconciling UV attenuation and IR emission Cosmological probes of Dark Radiation from Neutrino Mixing Static neutral black holes in Kalb-Ramond gravity Neural networks assisted Metropolis-Hastings for Bayesian estimation of critical exponent on elliptic black hole solution in 4D using quantum perturbation theory Cosmic neutrino decoupling and its observable imprints: insights from entropic-dual transport
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1