Kamal Shaker, Morteza Eskandari-Ghadi, Soheil Mohammadi
{"title":"使用完全匹配层的孔弹性横向各向同性半空间中波传播的无网格法","authors":"Kamal Shaker, Morteza Eskandari-Ghadi, Soheil Mohammadi","doi":"10.1002/nag.3797","DOIUrl":null,"url":null,"abstract":"<p>Numerical investigation of wave propagation in transversely isotropic poroelastic half-space with the use of a new stretched coordinate system through the Meshless Local Petrov–Galerkin (MLPG) formulation is presented in this paper. To this end, the <b><i>u</i></b>−<i>p</i> formulation of Biot is adopted as the framework of the porous media. One approach to numerically solve the infinite domain problems is the use of an absorber layer in which the whole half-space is divided into two parts, that is (i) a finite part, in which the responses are interested, and (ii) the remaining semi-infinite part, which is replaced by a Perfectly Matched Layer (PML). The stretched coordinates in the PML are introduced in such a way that the wave propagating in it does not generate spurious reflection to the finite part. Comparing the numerical results with some existing exact solutions and evaluating the norm of error demonstrate that the response functions in the finite part are achievable as precise as desired. Some new results are also presented which show the validity of the numerical approach in poroelastic transversely isotropic domain.</p>","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"48 16","pages":"3751-3779"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meshless method for wave propagation in poroelastic transversely isotropic half-space with the use of perfectly matched layer\",\"authors\":\"Kamal Shaker, Morteza Eskandari-Ghadi, Soheil Mohammadi\",\"doi\":\"10.1002/nag.3797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Numerical investigation of wave propagation in transversely isotropic poroelastic half-space with the use of a new stretched coordinate system through the Meshless Local Petrov–Galerkin (MLPG) formulation is presented in this paper. To this end, the <b><i>u</i></b>−<i>p</i> formulation of Biot is adopted as the framework of the porous media. One approach to numerically solve the infinite domain problems is the use of an absorber layer in which the whole half-space is divided into two parts, that is (i) a finite part, in which the responses are interested, and (ii) the remaining semi-infinite part, which is replaced by a Perfectly Matched Layer (PML). The stretched coordinates in the PML are introduced in such a way that the wave propagating in it does not generate spurious reflection to the finite part. Comparing the numerical results with some existing exact solutions and evaluating the norm of error demonstrate that the response functions in the finite part are achievable as precise as desired. Some new results are also presented which show the validity of the numerical approach in poroelastic transversely isotropic domain.</p>\",\"PeriodicalId\":13786,\"journal\":{\"name\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"volume\":\"48 16\",\"pages\":\"3751-3779\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nag.3797\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nag.3797","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Meshless method for wave propagation in poroelastic transversely isotropic half-space with the use of perfectly matched layer
Numerical investigation of wave propagation in transversely isotropic poroelastic half-space with the use of a new stretched coordinate system through the Meshless Local Petrov–Galerkin (MLPG) formulation is presented in this paper. To this end, the u−p formulation of Biot is adopted as the framework of the porous media. One approach to numerically solve the infinite domain problems is the use of an absorber layer in which the whole half-space is divided into two parts, that is (i) a finite part, in which the responses are interested, and (ii) the remaining semi-infinite part, which is replaced by a Perfectly Matched Layer (PML). The stretched coordinates in the PML are introduced in such a way that the wave propagating in it does not generate spurious reflection to the finite part. Comparing the numerical results with some existing exact solutions and evaluating the norm of error demonstrate that the response functions in the finite part are achievable as precise as desired. Some new results are also presented which show the validity of the numerical approach in poroelastic transversely isotropic domain.
期刊介绍:
The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.