Till M. Muenker, Gabriel Knotz, Matthias Krüger, Timo Betz
{"title":"从被动测量中获取人造和活体系统的活动和粘弹特性","authors":"Till M. Muenker, Gabriel Knotz, Matthias Krüger, Timo Betz","doi":"10.1038/s41563-024-01957-2","DOIUrl":null,"url":null,"abstract":"Living systems are complex dynamic entities that operate far from thermodynamic equilibrium. Their active, non-equilibrium behaviour requires energy to drive cellular organization and dynamics. Unfortunately, most statistical mechanics approaches are not valid in non-equilibrium situations, forcing researchers to use intricate and often invasive methods to study living processes. Here we experimentally demonstrate that an observable termed mean back relaxation quantifies the active mechanics of living cells from passively observed particle trajectories. The mean back relaxation represents the average trajectory of a particle after a recent motion and is calculated from three-point probabilities. We show that this parameter allows the detection of broken detailed balance in confined systems. We experimentally observe that it provides access to the non-equilibrium generating energy and viscoelastic properties of artificial bulk materials and living cells. These findings suggest that the mean back relaxation can function as a marker of non-equilibrium dynamics and is a non-invasive avenue to determine viscoelastic material properties from passive measurements. An approach based on the average trajectory of moving particles allows for the quantification of the mechanics of living systems, namely, the non-equilibrium energy and viscoelastic properties of cells, in a non-invasive manner.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 9","pages":"1283-1291"},"PeriodicalIF":37.2000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accessing activity and viscoelastic properties of artificial and living systems from passive measurement\",\"authors\":\"Till M. Muenker, Gabriel Knotz, Matthias Krüger, Timo Betz\",\"doi\":\"10.1038/s41563-024-01957-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Living systems are complex dynamic entities that operate far from thermodynamic equilibrium. Their active, non-equilibrium behaviour requires energy to drive cellular organization and dynamics. Unfortunately, most statistical mechanics approaches are not valid in non-equilibrium situations, forcing researchers to use intricate and often invasive methods to study living processes. Here we experimentally demonstrate that an observable termed mean back relaxation quantifies the active mechanics of living cells from passively observed particle trajectories. The mean back relaxation represents the average trajectory of a particle after a recent motion and is calculated from three-point probabilities. We show that this parameter allows the detection of broken detailed balance in confined systems. We experimentally observe that it provides access to the non-equilibrium generating energy and viscoelastic properties of artificial bulk materials and living cells. These findings suggest that the mean back relaxation can function as a marker of non-equilibrium dynamics and is a non-invasive avenue to determine viscoelastic material properties from passive measurements. An approach based on the average trajectory of moving particles allows for the quantification of the mechanics of living systems, namely, the non-equilibrium energy and viscoelastic properties of cells, in a non-invasive manner.\",\"PeriodicalId\":19058,\"journal\":{\"name\":\"Nature Materials\",\"volume\":\"23 9\",\"pages\":\"1283-1291\"},\"PeriodicalIF\":37.2000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41563-024-01957-2\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41563-024-01957-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Accessing activity and viscoelastic properties of artificial and living systems from passive measurement
Living systems are complex dynamic entities that operate far from thermodynamic equilibrium. Their active, non-equilibrium behaviour requires energy to drive cellular organization and dynamics. Unfortunately, most statistical mechanics approaches are not valid in non-equilibrium situations, forcing researchers to use intricate and often invasive methods to study living processes. Here we experimentally demonstrate that an observable termed mean back relaxation quantifies the active mechanics of living cells from passively observed particle trajectories. The mean back relaxation represents the average trajectory of a particle after a recent motion and is calculated from three-point probabilities. We show that this parameter allows the detection of broken detailed balance in confined systems. We experimentally observe that it provides access to the non-equilibrium generating energy and viscoelastic properties of artificial bulk materials and living cells. These findings suggest that the mean back relaxation can function as a marker of non-equilibrium dynamics and is a non-invasive avenue to determine viscoelastic material properties from passive measurements. An approach based on the average trajectory of moving particles allows for the quantification of the mechanics of living systems, namely, the non-equilibrium energy and viscoelastic properties of cells, in a non-invasive manner.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.