{"title":"双-EMA/双-GMA 比率对树脂性能和浸渍纤维束的影响","authors":"Muhanad M. Hatamleh , Adilson Yoshio Furuse","doi":"10.1016/j.dental.2024.07.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p>To evaluate the effect of different ratios of Bis-EMA/Bis-GMA resin mixtures on the inherent viscosity and curing-related properties: including degree of cure (DC%), shrinkage strain, Knoop micro-hardness (KH) and flexural strength of resin-impregnated fiber-bundles.</p></div><div><h3>Methods</h3><p>Bis-EMA/Bis-GMA monomers were mixed (by weight) in the following ratios: M1 = 30 %/70 %, M2 = 50 %/50 %, M3 = 70 %/30 %, and M4 = 100 %/0 %. Standard measurements were made of refractive index, viscosity, degree of conversion, shrinkage strain and Knoop hardness (KHN). For 60 % glass fiber-bundles impregnated with 40 % resin, three-point bending test for flexural strength and shrinkage strain were measured. Data were analyzed by One-way ANOVA and Bonferroni <em>post-hoc</em> tests (α = 0.05).</p></div><div><h3>Results</h3><p>For resin mixtures, increasing Bis-EMA proportion decreased refractive index (p < 0.05), and viscosity (p < 0.05), and increased monomer conversion (DC%), shrinkage strain and KHN (p < 0.05). DC% increased after 1 h for all resin mixtures. The shrinkage strain and flexural strength of resin-impregnated fiber-bundles reduced with increased Bis-EMA.</p></div><div><h3>Significance</h3><p>Monomeric mixtures with highest amounts of Bis-EMA showed enhancement in several clinically-relevant properties and polymerization of respective resin-impregnated glass fibers. This makes them potential candidates for impregnating glass fibers in fiber-reinforced restorations.</p></div>","PeriodicalId":298,"journal":{"name":"Dental Materials","volume":"40 10","pages":"Pages 1652-1657"},"PeriodicalIF":4.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bis-EMA/Bis-GMA ratio effects on resin-properties and impregnated fiber-bundles\",\"authors\":\"Muhanad M. Hatamleh , Adilson Yoshio Furuse\",\"doi\":\"10.1016/j.dental.2024.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><p>To evaluate the effect of different ratios of Bis-EMA/Bis-GMA resin mixtures on the inherent viscosity and curing-related properties: including degree of cure (DC%), shrinkage strain, Knoop micro-hardness (KH) and flexural strength of resin-impregnated fiber-bundles.</p></div><div><h3>Methods</h3><p>Bis-EMA/Bis-GMA monomers were mixed (by weight) in the following ratios: M1 = 30 %/70 %, M2 = 50 %/50 %, M3 = 70 %/30 %, and M4 = 100 %/0 %. Standard measurements were made of refractive index, viscosity, degree of conversion, shrinkage strain and Knoop hardness (KHN). For 60 % glass fiber-bundles impregnated with 40 % resin, three-point bending test for flexural strength and shrinkage strain were measured. Data were analyzed by One-way ANOVA and Bonferroni <em>post-hoc</em> tests (α = 0.05).</p></div><div><h3>Results</h3><p>For resin mixtures, increasing Bis-EMA proportion decreased refractive index (p < 0.05), and viscosity (p < 0.05), and increased monomer conversion (DC%), shrinkage strain and KHN (p < 0.05). DC% increased after 1 h for all resin mixtures. The shrinkage strain and flexural strength of resin-impregnated fiber-bundles reduced with increased Bis-EMA.</p></div><div><h3>Significance</h3><p>Monomeric mixtures with highest amounts of Bis-EMA showed enhancement in several clinically-relevant properties and polymerization of respective resin-impregnated glass fibers. This makes them potential candidates for impregnating glass fibers in fiber-reinforced restorations.</p></div>\",\"PeriodicalId\":298,\"journal\":{\"name\":\"Dental Materials\",\"volume\":\"40 10\",\"pages\":\"Pages 1652-1657\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dental Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0109564124001866\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0109564124001866","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Bis-EMA/Bis-GMA ratio effects on resin-properties and impregnated fiber-bundles
Objectives
To evaluate the effect of different ratios of Bis-EMA/Bis-GMA resin mixtures on the inherent viscosity and curing-related properties: including degree of cure (DC%), shrinkage strain, Knoop micro-hardness (KH) and flexural strength of resin-impregnated fiber-bundles.
Methods
Bis-EMA/Bis-GMA monomers were mixed (by weight) in the following ratios: M1 = 30 %/70 %, M2 = 50 %/50 %, M3 = 70 %/30 %, and M4 = 100 %/0 %. Standard measurements were made of refractive index, viscosity, degree of conversion, shrinkage strain and Knoop hardness (KHN). For 60 % glass fiber-bundles impregnated with 40 % resin, three-point bending test for flexural strength and shrinkage strain were measured. Data were analyzed by One-way ANOVA and Bonferroni post-hoc tests (α = 0.05).
Results
For resin mixtures, increasing Bis-EMA proportion decreased refractive index (p < 0.05), and viscosity (p < 0.05), and increased monomer conversion (DC%), shrinkage strain and KHN (p < 0.05). DC% increased after 1 h for all resin mixtures. The shrinkage strain and flexural strength of resin-impregnated fiber-bundles reduced with increased Bis-EMA.
Significance
Monomeric mixtures with highest amounts of Bis-EMA showed enhancement in several clinically-relevant properties and polymerization of respective resin-impregnated glass fibers. This makes them potential candidates for impregnating glass fibers in fiber-reinforced restorations.
期刊介绍:
Dental Materials publishes original research, review articles, and short communications.
Academy of Dental Materials members click here to register for free access to Dental Materials online.
The principal aim of Dental Materials is to promote rapid communication of scientific information between academia, industry, and the dental practitioner. Original Manuscripts on clinical and laboratory research of basic and applied character which focus on the properties or performance of dental materials or the reaction of host tissues to materials are given priority publication. Other acceptable topics include application technology in clinical dentistry and dental laboratory technology.
Comprehensive reviews and editorial commentaries on pertinent subjects will be considered.