Yiping Wu, Xuefang Peng, Dexun Fan, Shuangyan Han, Xiaorong Yang
{"title":"在 Pichia pastoris 中从头开始和提高生产 Monacolin J 的途径重建和代谢工程。","authors":"Yiping Wu, Xuefang Peng, Dexun Fan, Shuangyan Han, Xiaorong Yang","doi":"10.1007/s00449-024-03069-2","DOIUrl":null,"url":null,"abstract":"<p><p>The statin is the primary cholesterol-lowering drug. Monacolin J (MJ) is a key intermediate in the biosynthetic pathway of statin. It was obtained in industry by the alkaline hydrolysis of lovastatin. The hydrolysis process resulted in multiple by-products and expensive cost of wastewater treatment. In this work, we used Pichia pastoris as the host to produce the MJ. The biosynthesis pathway of MJ was built in P. pastoris. The stable recombinant strain MJ2 was obtained by the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 genome-editing tool, and produced the MJ titer of 153.6 ± 2.4 mg/L. The metabolic engineering was utilized to enhance the production of MJ, and the fermentation condition was optimized. The MJ titer of 357.5 ± 5.0 mg/L was obtained from the recombinant strain MJ5-AZ with ATP-dependent citrate lyase (ACL), glucose-6-phosphate dehydrogenase (ZWF1) and four lovB genes, 132.7% higher than that from the original strain MJ2. The recombinant strain MJ5-AZ was cultured in a 7-L fermenter, and the MJ titer of 1493.0 ± 9.2 mg/L was achieved. The results suggested that increasing the gene dosage of rate-limiting step in the biosynthesis pathway of chemicals could improve the titer of production. It might be applicable to the production optimization of other polyketide metabolites.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pathway reconstruction and metabolic engineering for the de novo and enhancing production of monacolin J in Pichia pastoris.\",\"authors\":\"Yiping Wu, Xuefang Peng, Dexun Fan, Shuangyan Han, Xiaorong Yang\",\"doi\":\"10.1007/s00449-024-03069-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The statin is the primary cholesterol-lowering drug. Monacolin J (MJ) is a key intermediate in the biosynthetic pathway of statin. It was obtained in industry by the alkaline hydrolysis of lovastatin. The hydrolysis process resulted in multiple by-products and expensive cost of wastewater treatment. In this work, we used Pichia pastoris as the host to produce the MJ. The biosynthesis pathway of MJ was built in P. pastoris. The stable recombinant strain MJ2 was obtained by the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 genome-editing tool, and produced the MJ titer of 153.6 ± 2.4 mg/L. The metabolic engineering was utilized to enhance the production of MJ, and the fermentation condition was optimized. The MJ titer of 357.5 ± 5.0 mg/L was obtained from the recombinant strain MJ5-AZ with ATP-dependent citrate lyase (ACL), glucose-6-phosphate dehydrogenase (ZWF1) and four lovB genes, 132.7% higher than that from the original strain MJ2. The recombinant strain MJ5-AZ was cultured in a 7-L fermenter, and the MJ titer of 1493.0 ± 9.2 mg/L was achieved. The results suggested that increasing the gene dosage of rate-limiting step in the biosynthesis pathway of chemicals could improve the titer of production. It might be applicable to the production optimization of other polyketide metabolites.</p>\",\"PeriodicalId\":9024,\"journal\":{\"name\":\"Bioprocess and Biosystems Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprocess and Biosystems Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00449-024-03069-2\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-024-03069-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Pathway reconstruction and metabolic engineering for the de novo and enhancing production of monacolin J in Pichia pastoris.
The statin is the primary cholesterol-lowering drug. Monacolin J (MJ) is a key intermediate in the biosynthetic pathway of statin. It was obtained in industry by the alkaline hydrolysis of lovastatin. The hydrolysis process resulted in multiple by-products and expensive cost of wastewater treatment. In this work, we used Pichia pastoris as the host to produce the MJ. The biosynthesis pathway of MJ was built in P. pastoris. The stable recombinant strain MJ2 was obtained by the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 genome-editing tool, and produced the MJ titer of 153.6 ± 2.4 mg/L. The metabolic engineering was utilized to enhance the production of MJ, and the fermentation condition was optimized. The MJ titer of 357.5 ± 5.0 mg/L was obtained from the recombinant strain MJ5-AZ with ATP-dependent citrate lyase (ACL), glucose-6-phosphate dehydrogenase (ZWF1) and four lovB genes, 132.7% higher than that from the original strain MJ2. The recombinant strain MJ5-AZ was cultured in a 7-L fermenter, and the MJ titer of 1493.0 ± 9.2 mg/L was achieved. The results suggested that increasing the gene dosage of rate-limiting step in the biosynthesis pathway of chemicals could improve the titer of production. It might be applicable to the production optimization of other polyketide metabolites.
期刊介绍:
Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes.
Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged.
The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.