Negar Naghavi, Dr. Maisam Jalaly, Samira Mohammadi, Dr. S. Morteza Mousavi-Khoshdel
{"title":"研究石墨烯含量对实现高性能二氧化钛-石墨烯纳米复合材料超级电容器的影响","authors":"Negar Naghavi, Dr. Maisam Jalaly, Samira Mohammadi, Dr. S. Morteza Mousavi-Khoshdel","doi":"10.1002/open.202400128","DOIUrl":null,"url":null,"abstract":"<p>This study presents the synthesis of TiO<sub>2</sub>-graphene nanocomposites with varying mass ratios of graphene (2.5, 5, 10, 20 wt. %) using a facile and cost-effective hydrothermal approach. By integrating TiO<sub>2</sub> nanoparticles with graphene, a nanomaterial characterized by a two-dimensional structure, unique electrical conductivity and high specific surface area, the resulting hybrid material shows promise for application in supercapacitors. The nanocomposite specimens were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman microscopy, field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). Additionally, supercapacitive properties were investigated using a three-electrode setup by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) tests. Notably, the TiO<sub>2</sub>-20 wt. % rGO nanocomposite exhibited the highest specific capacitance of 624 F/g at 2 A/g, showcasing superior electrochemical performance. This specimen indicated a high rate capability and cyclic stability (93 % retention after 2000 cycles). Its remarkable energy density and power density of this sample designate it as a strong contender for practical supercapacitor applications.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":"13 11","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564865/pdf/","citationCount":"0","resultStr":"{\"title\":\"An Investigation into the Influence of Graphene Content on Achieving a High-Performance TiO2-Graphene Nanocomposite Supercapacitor\",\"authors\":\"Negar Naghavi, Dr. Maisam Jalaly, Samira Mohammadi, Dr. S. Morteza Mousavi-Khoshdel\",\"doi\":\"10.1002/open.202400128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study presents the synthesis of TiO<sub>2</sub>-graphene nanocomposites with varying mass ratios of graphene (2.5, 5, 10, 20 wt. %) using a facile and cost-effective hydrothermal approach. By integrating TiO<sub>2</sub> nanoparticles with graphene, a nanomaterial characterized by a two-dimensional structure, unique electrical conductivity and high specific surface area, the resulting hybrid material shows promise for application in supercapacitors. The nanocomposite specimens were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman microscopy, field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). Additionally, supercapacitive properties were investigated using a three-electrode setup by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) tests. Notably, the TiO<sub>2</sub>-20 wt. % rGO nanocomposite exhibited the highest specific capacitance of 624 F/g at 2 A/g, showcasing superior electrochemical performance. This specimen indicated a high rate capability and cyclic stability (93 % retention after 2000 cycles). Its remarkable energy density and power density of this sample designate it as a strong contender for practical supercapacitor applications.</p>\",\"PeriodicalId\":9831,\"journal\":{\"name\":\"ChemistryOpen\",\"volume\":\"13 11\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564865/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemistryOpen\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/open.202400128\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistryOpen","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/open.202400128","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
An Investigation into the Influence of Graphene Content on Achieving a High-Performance TiO2-Graphene Nanocomposite Supercapacitor
This study presents the synthesis of TiO2-graphene nanocomposites with varying mass ratios of graphene (2.5, 5, 10, 20 wt. %) using a facile and cost-effective hydrothermal approach. By integrating TiO2 nanoparticles with graphene, a nanomaterial characterized by a two-dimensional structure, unique electrical conductivity and high specific surface area, the resulting hybrid material shows promise for application in supercapacitors. The nanocomposite specimens were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman microscopy, field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). Additionally, supercapacitive properties were investigated using a three-electrode setup by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) tests. Notably, the TiO2-20 wt. % rGO nanocomposite exhibited the highest specific capacitance of 624 F/g at 2 A/g, showcasing superior electrochemical performance. This specimen indicated a high rate capability and cyclic stability (93 % retention after 2000 cycles). Its remarkable energy density and power density of this sample designate it as a strong contender for practical supercapacitor applications.
期刊介绍:
ChemistryOpen is a multidisciplinary, gold-road open-access, international forum for the publication of outstanding Reviews, Full Papers, and Communications from all areas of chemistry and related fields. It is co-owned by 16 continental European Chemical Societies, who have banded together in the alliance called ChemPubSoc Europe for the purpose of publishing high-quality journals in the field of chemistry and its border disciplines. As some of the governments of the countries represented in ChemPubSoc Europe have strongly recommended that the research conducted with their funding is freely accessible for all readers (Open Access), ChemPubSoc Europe was concerned that no journal for which the ethical standards were monitored by a chemical society was available for such papers. ChemistryOpen fills this gap.