使用 PoissonERM 对二元结果进行自动泊松回归暴露-反应分析。

IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY CPT: Pharmacometrics & Systems Pharmacology Pub Date : 2024-07-31 DOI:10.1002/psp4.13207
Yuchen Wang, Luke Fostvedt, Jessica Wojciechowski, Donald Irby, Timothy Nicholas
{"title":"使用 PoissonERM 对二元结果进行自动泊松回归暴露-反应分析。","authors":"Yuchen Wang,&nbsp;Luke Fostvedt,&nbsp;Jessica Wojciechowski,&nbsp;Donald Irby,&nbsp;Timothy Nicholas","doi":"10.1002/psp4.13207","DOIUrl":null,"url":null,"abstract":"<p>\n <i>PoissonERM</i> is an R package used to conduct exposure–response (ER) analysis on binary outcomes for establishing the relationship between exposure and the occurrence of adverse events (AE). While Poisson regression could be implemented with <i>glm(), PoissonERM</i> provides a simple way to semi-automate the entire analysis and generate an abbreviated report as an R markdown (Rmd) file that includes the essential analysis details with brief conclusions. <i>PoissonERM</i> processes the provided data set using the information from the user's control script and generates summary tables/figures for the exposure metrics, covariates, and event counts of each endpoint (each type of AE). After checking the incidence rate of each AE, the correlation, and missing values in each covariate, an exposure–response model is developed for each endpoint based on the provided specifications. <i>PoissonERM</i> has the flexibility to incorporate and compare multiple scale transformations in its modeling. The best exposure metric is selected based on a univariate model's <i>p</i>-value or deviance (<span></span><math>\n \n <semantics>\n \n <mrow>\n \n <mi>Δ</mi>\n \n <mi>D</mi>\n </mrow>\n </semantics>\n </math>) as specified. If a covariate search is specified in the control script, the final model is developed using backward elimination. <i>PoissonERM</i> identifies and avoids highly correlated covariates in the final model development of each endpoint. Predicting event incidence rates using external (simulated) exposure metric data is an additional functionality in <i>PoissonERM</i>, which is useful to understand the event occurrence associated with certain dose regimens. The summary outputs of the cleaned data, model developments, and predictions are saved in the working folder and can be compiled into a HTML report using Rmd.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":"13 10","pages":"1615-1629"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494912/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automated Poisson regression exposure–response analysis for binary outcomes with PoissonERM\",\"authors\":\"Yuchen Wang,&nbsp;Luke Fostvedt,&nbsp;Jessica Wojciechowski,&nbsp;Donald Irby,&nbsp;Timothy Nicholas\",\"doi\":\"10.1002/psp4.13207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>\\n <i>PoissonERM</i> is an R package used to conduct exposure–response (ER) analysis on binary outcomes for establishing the relationship between exposure and the occurrence of adverse events (AE). While Poisson regression could be implemented with <i>glm(), PoissonERM</i> provides a simple way to semi-automate the entire analysis and generate an abbreviated report as an R markdown (Rmd) file that includes the essential analysis details with brief conclusions. <i>PoissonERM</i> processes the provided data set using the information from the user's control script and generates summary tables/figures for the exposure metrics, covariates, and event counts of each endpoint (each type of AE). After checking the incidence rate of each AE, the correlation, and missing values in each covariate, an exposure–response model is developed for each endpoint based on the provided specifications. <i>PoissonERM</i> has the flexibility to incorporate and compare multiple scale transformations in its modeling. The best exposure metric is selected based on a univariate model's <i>p</i>-value or deviance (<span></span><math>\\n \\n <semantics>\\n \\n <mrow>\\n \\n <mi>Δ</mi>\\n \\n <mi>D</mi>\\n </mrow>\\n </semantics>\\n </math>) as specified. If a covariate search is specified in the control script, the final model is developed using backward elimination. <i>PoissonERM</i> identifies and avoids highly correlated covariates in the final model development of each endpoint. Predicting event incidence rates using external (simulated) exposure metric data is an additional functionality in <i>PoissonERM</i>, which is useful to understand the event occurrence associated with certain dose regimens. The summary outputs of the cleaned data, model developments, and predictions are saved in the working folder and can be compiled into a HTML report using Rmd.</p>\",\"PeriodicalId\":10774,\"journal\":{\"name\":\"CPT: Pharmacometrics & Systems Pharmacology\",\"volume\":\"13 10\",\"pages\":\"1615-1629\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494912/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CPT: Pharmacometrics & Systems Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/psp4.13207\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT: Pharmacometrics & Systems Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/psp4.13207","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

PoissonERM 是一个 R 软件包,用于对二元结果进行暴露-反应(ER)分析,以确定暴露与不良事件(AE)发生之间的关系。虽然泊松回归可以用 glm() 实现,但 PoissonERM 提供了一种简单的方法来半自动化整个分析,并以 R markdown (Rmd) 文件的形式生成简短报告,其中包括基本的分析细节和简要结论。PoissonERM 使用用户控制脚本中的信息处理所提供的数据集,并生成每个终点(每种 AE)的暴露指标、协变量和事件计数的汇总表/图。在检查了每个 AE 的发病率、相关性和每个协变量的缺失值后,就会根据所提供的规格为每个终点建立暴露-反应模型。PoissonERM 可以灵活地在建模过程中纳入并比较多种尺度变换。根据单变量模型的 p 值或偏差(Δ D $$ \Delta D $$)选择最佳暴露指标。如果在控制脚本中指定了协变量搜索,则使用后向消除法建立最终模型。PoissonERM 会在每个终点的最终模型建立过程中识别并避免高度相关的协变量。使用外部(模拟)暴露指标数据预测事件发生率是 PoissonERM 的一项附加功能,有助于了解与特定剂量方案相关的事件发生率。清理后的数据、模型开发和预测的汇总输出保存在工作文件夹中,可使用 Rmd 编译成 HTML 报告。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated Poisson regression exposure–response analysis for binary outcomes with PoissonERM

PoissonERM is an R package used to conduct exposure–response (ER) analysis on binary outcomes for establishing the relationship between exposure and the occurrence of adverse events (AE). While Poisson regression could be implemented with glm(), PoissonERM provides a simple way to semi-automate the entire analysis and generate an abbreviated report as an R markdown (Rmd) file that includes the essential analysis details with brief conclusions. PoissonERM processes the provided data set using the information from the user's control script and generates summary tables/figures for the exposure metrics, covariates, and event counts of each endpoint (each type of AE). After checking the incidence rate of each AE, the correlation, and missing values in each covariate, an exposure–response model is developed for each endpoint based on the provided specifications. PoissonERM has the flexibility to incorporate and compare multiple scale transformations in its modeling. The best exposure metric is selected based on a univariate model's p-value or deviance ( Δ D ) as specified. If a covariate search is specified in the control script, the final model is developed using backward elimination. PoissonERM identifies and avoids highly correlated covariates in the final model development of each endpoint. Predicting event incidence rates using external (simulated) exposure metric data is an additional functionality in PoissonERM, which is useful to understand the event occurrence associated with certain dose regimens. The summary outputs of the cleaned data, model developments, and predictions are saved in the working folder and can be compiled into a HTML report using Rmd.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
11.40%
发文量
146
审稿时长
8 weeks
期刊最新文献
Clinical study design strategies to mitigate confounding effects of time-dependent clearance on dose optimization of therapeutic antibodies. Exploration of the potential impact of batch-to-batch variability on the establishment of pharmacokinetic bioequivalence for inhalation powder drug products. Population pharmacokinetics of selexipag for dose selection and confirmation in pediatric patients with pulmonary arterial hypertension. Issue Information Exposure-response modeling of liver fat imaging endpoints in non-alcoholic fatty liver disease populations administered ervogastat alone and co-administered with clesacostat.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1