利用 NeuroPeptide-HMMer (NP-HMMer) 进行全蛋白质组神经肽鉴定。

IF 2.1 3区 医学 Q3 ENDOCRINOLOGY & METABOLISM General and comparative endocrinology Pub Date : 2024-07-29 DOI:10.1016/j.ygcen.2024.114597
Meet Zandawala , Muhammad Bilal Amir , Joel Shin , Won C. Yim , Luis Alfonso Yañez Guerra
{"title":"利用 NeuroPeptide-HMMer (NP-HMMer) 进行全蛋白质组神经肽鉴定。","authors":"Meet Zandawala ,&nbsp;Muhammad Bilal Amir ,&nbsp;Joel Shin ,&nbsp;Won C. Yim ,&nbsp;Luis Alfonso Yañez Guerra","doi":"10.1016/j.ygcen.2024.114597","DOIUrl":null,"url":null,"abstract":"<div><p>Neuropeptides are essential neuronal signaling molecules that orchestrate animal behavior and physiology via actions within the nervous system and on peripheral tissues. Due to the small size of biologically active mature peptides, their identification on a proteome-wide scale poses a significant challenge using existing bioinformatics tools like BLAST. To address this, we have developed NeuroPeptide-HMMer (NP-HMMer), a hidden Markov model (HMM)-based tool to facilitate neuropeptide discovery, especially in underexplored invertebrates. NP-HMMer utilizes manually curated HMMs for 46 neuropeptide families, enabling rapid and accurate identification of neuropeptides. Validation of NP-HMMer on <em>Drosophila melanogaster</em>, <em>Daphnia pulex</em>, <em>Tribolium castaneum</em> and <em>Tenebrio molitor</em> demonstrated its effectiveness in identifying known neuropeptides across diverse arthropods. Additionally, we showcase the utility of NP-HMMer by discovering novel neuropeptides in Priapulida and Rotifera, identifying 22 and 19 new peptides, respectively. This tool represents a significant advancement in neuropeptide research, offering a robust method for annotating neuropeptides across diverse proteomes and providing insights into the evolutionary conservation of neuropeptide signaling pathways.</p></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":"357 ","pages":"Article 114597"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S001664802400159X/pdfft?md5=576e13a0911d699752a0e08fc158490e&pid=1-s2.0-S001664802400159X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Proteome-wide neuropeptide identification using NeuroPeptide-HMMer (NP-HMMer)\",\"authors\":\"Meet Zandawala ,&nbsp;Muhammad Bilal Amir ,&nbsp;Joel Shin ,&nbsp;Won C. Yim ,&nbsp;Luis Alfonso Yañez Guerra\",\"doi\":\"10.1016/j.ygcen.2024.114597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Neuropeptides are essential neuronal signaling molecules that orchestrate animal behavior and physiology via actions within the nervous system and on peripheral tissues. Due to the small size of biologically active mature peptides, their identification on a proteome-wide scale poses a significant challenge using existing bioinformatics tools like BLAST. To address this, we have developed NeuroPeptide-HMMer (NP-HMMer), a hidden Markov model (HMM)-based tool to facilitate neuropeptide discovery, especially in underexplored invertebrates. NP-HMMer utilizes manually curated HMMs for 46 neuropeptide families, enabling rapid and accurate identification of neuropeptides. Validation of NP-HMMer on <em>Drosophila melanogaster</em>, <em>Daphnia pulex</em>, <em>Tribolium castaneum</em> and <em>Tenebrio molitor</em> demonstrated its effectiveness in identifying known neuropeptides across diverse arthropods. Additionally, we showcase the utility of NP-HMMer by discovering novel neuropeptides in Priapulida and Rotifera, identifying 22 and 19 new peptides, respectively. This tool represents a significant advancement in neuropeptide research, offering a robust method for annotating neuropeptides across diverse proteomes and providing insights into the evolutionary conservation of neuropeptide signaling pathways.</p></div>\",\"PeriodicalId\":12582,\"journal\":{\"name\":\"General and comparative endocrinology\",\"volume\":\"357 \",\"pages\":\"Article 114597\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S001664802400159X/pdfft?md5=576e13a0911d699752a0e08fc158490e&pid=1-s2.0-S001664802400159X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General and comparative endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001664802400159X\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General and comparative endocrinology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001664802400159X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

神经肽是重要的神经元信号分子,通过在神经系统和外周组织中的作用协调动物的行为和生理。由于具有生物活性的成熟多肽体积很小,因此使用现有的生物信息学工具(如 BLAST)在整个蛋白质组范围内鉴定这些多肽是一项巨大的挑战。为了解决这个问题,我们开发了基于隐马尔可夫模型(HMM)的工具 NeuroPeptide-HMMer(NP-HMMer),以促进神经肽的发现,尤其是在未充分开发的无脊椎动物中。NP-HMMer 利用人工编辑的 46 个神经肽家族的 HMM,能够快速准确地识别神经肽。NP-HMMer 在黑腹果蝇、水蚤、蓖麻蒺藜和栉水母上的验证表明,它能有效识别各种节肢动物的已知神经肽。此外,我们还发现了 Priapulida 和轮虫的新型神经肽,分别鉴定出 22 和 19 种新肽,从而展示了 NP-HMMer 的实用性。该工具代表了神经肽研究的一大进步,提供了一种强大的方法来注释不同蛋白质组中的神经肽,并为神经肽信号通路的进化保护提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proteome-wide neuropeptide identification using NeuroPeptide-HMMer (NP-HMMer)

Neuropeptides are essential neuronal signaling molecules that orchestrate animal behavior and physiology via actions within the nervous system and on peripheral tissues. Due to the small size of biologically active mature peptides, their identification on a proteome-wide scale poses a significant challenge using existing bioinformatics tools like BLAST. To address this, we have developed NeuroPeptide-HMMer (NP-HMMer), a hidden Markov model (HMM)-based tool to facilitate neuropeptide discovery, especially in underexplored invertebrates. NP-HMMer utilizes manually curated HMMs for 46 neuropeptide families, enabling rapid and accurate identification of neuropeptides. Validation of NP-HMMer on Drosophila melanogaster, Daphnia pulex, Tribolium castaneum and Tenebrio molitor demonstrated its effectiveness in identifying known neuropeptides across diverse arthropods. Additionally, we showcase the utility of NP-HMMer by discovering novel neuropeptides in Priapulida and Rotifera, identifying 22 and 19 new peptides, respectively. This tool represents a significant advancement in neuropeptide research, offering a robust method for annotating neuropeptides across diverse proteomes and providing insights into the evolutionary conservation of neuropeptide signaling pathways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
General and comparative endocrinology
General and comparative endocrinology 医学-内分泌学与代谢
CiteScore
5.60
自引率
7.40%
发文量
120
审稿时长
2 months
期刊介绍: General and Comparative Endocrinology publishes articles concerned with the many complexities of vertebrate and invertebrate endocrine systems at the sub-molecular, molecular, cellular and organismal levels of analysis.
期刊最新文献
Pharmacological function of melanocortin-3 receptor in goldfish (Carassius auratus). Enhanced expression of Cyp17a1 and production of DHEA-S in the liver of late-pregnant rats. Stress Axis: Molecular and Cellular Regulation of the HPI/HPA Axis. Zebra finches (Taeniopygia castanotis) display varying degrees of stress resilience in response to constant light. Gonadotropin-releasing hormone II and its receptor regulate motility, morphology, and kinematics of porcine spermatozoa in vitro.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1