{"title":"机械敏感性离子通道Piezo1有助于狼疮性肾炎患者荚膜细胞细胞骨架重塑和蛋白尿的形成。","authors":"","doi":"10.1016/j.kint.2024.06.025","DOIUrl":null,"url":null,"abstract":"<div><p>Piezo1 functions as a special transducer of mechanostress into electrochemical signals and is implicated in the pathogenesis of various diseases across different disciplines. However, whether Piezo1 contributes to the pathogenesis of lupus nephritis (LN) remains elusive. To study this, we applied an agonist and antagonist of Piezo1 to treat lupus-prone MRL/lpr mice. Additionally, a podocyte-specific Piezo1 knockout mouse model was also generated to substantiate the role of Piezo1 in podocyte injury induced by pristane, a murine model of LN. A marked upregulation of Piezo1 was found in podocytes in both human and murine LN. The Piezo1 antagonist, GsMTx4, significantly alleviated glomerulonephritis and tubulointerstitial damage, improved kidney function, decreased proteinuria, and mitigated podocyte foot process effacement in MRL/lpr mice. Moreover, podocyte-specific Piezo1 deletion showed protective effects on the progression of proteinuria and podocyte foot process effacement in the murine LN model. Mechanistically, Piezo1 expression was upregulated by inflammatory cytokines (IL-6, TNF-α and IFN-γ), soluble urokinase Plasminogen Activator Receptor and its own activation. Activation of Piezo1 elicited calcium influx, which subsequently enhanced Rac1 activity and increased active paxillin, thereby promoting cytoskeleton remodeling and decreasing podocyte motility. Thus, our work demonstrated that Piezo1 contributed to podocyte injury and proteinuria progression in LN. Hence, targeted therapy aimed at decreasing or inhibiting Piezo1 could represent a novel strategy to treat LN.</p></div>","PeriodicalId":17801,"journal":{"name":"Kidney international","volume":null,"pages":null},"PeriodicalIF":14.8000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The mechanosensitive ion channel Piezo1 contributes to podocyte cytoskeleton remodeling and development of proteinuria in lupus nephritis\",\"authors\":\"\",\"doi\":\"10.1016/j.kint.2024.06.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Piezo1 functions as a special transducer of mechanostress into electrochemical signals and is implicated in the pathogenesis of various diseases across different disciplines. However, whether Piezo1 contributes to the pathogenesis of lupus nephritis (LN) remains elusive. To study this, we applied an agonist and antagonist of Piezo1 to treat lupus-prone MRL/lpr mice. Additionally, a podocyte-specific Piezo1 knockout mouse model was also generated to substantiate the role of Piezo1 in podocyte injury induced by pristane, a murine model of LN. A marked upregulation of Piezo1 was found in podocytes in both human and murine LN. The Piezo1 antagonist, GsMTx4, significantly alleviated glomerulonephritis and tubulointerstitial damage, improved kidney function, decreased proteinuria, and mitigated podocyte foot process effacement in MRL/lpr mice. Moreover, podocyte-specific Piezo1 deletion showed protective effects on the progression of proteinuria and podocyte foot process effacement in the murine LN model. Mechanistically, Piezo1 expression was upregulated by inflammatory cytokines (IL-6, TNF-α and IFN-γ), soluble urokinase Plasminogen Activator Receptor and its own activation. Activation of Piezo1 elicited calcium influx, which subsequently enhanced Rac1 activity and increased active paxillin, thereby promoting cytoskeleton remodeling and decreasing podocyte motility. Thus, our work demonstrated that Piezo1 contributed to podocyte injury and proteinuria progression in LN. Hence, targeted therapy aimed at decreasing or inhibiting Piezo1 could represent a novel strategy to treat LN.</p></div>\",\"PeriodicalId\":17801,\"journal\":{\"name\":\"Kidney international\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.8000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kidney international\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0085253824005295\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kidney international","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0085253824005295","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
The mechanosensitive ion channel Piezo1 contributes to podocyte cytoskeleton remodeling and development of proteinuria in lupus nephritis
Piezo1 functions as a special transducer of mechanostress into electrochemical signals and is implicated in the pathogenesis of various diseases across different disciplines. However, whether Piezo1 contributes to the pathogenesis of lupus nephritis (LN) remains elusive. To study this, we applied an agonist and antagonist of Piezo1 to treat lupus-prone MRL/lpr mice. Additionally, a podocyte-specific Piezo1 knockout mouse model was also generated to substantiate the role of Piezo1 in podocyte injury induced by pristane, a murine model of LN. A marked upregulation of Piezo1 was found in podocytes in both human and murine LN. The Piezo1 antagonist, GsMTx4, significantly alleviated glomerulonephritis and tubulointerstitial damage, improved kidney function, decreased proteinuria, and mitigated podocyte foot process effacement in MRL/lpr mice. Moreover, podocyte-specific Piezo1 deletion showed protective effects on the progression of proteinuria and podocyte foot process effacement in the murine LN model. Mechanistically, Piezo1 expression was upregulated by inflammatory cytokines (IL-6, TNF-α and IFN-γ), soluble urokinase Plasminogen Activator Receptor and its own activation. Activation of Piezo1 elicited calcium influx, which subsequently enhanced Rac1 activity and increased active paxillin, thereby promoting cytoskeleton remodeling and decreasing podocyte motility. Thus, our work demonstrated that Piezo1 contributed to podocyte injury and proteinuria progression in LN. Hence, targeted therapy aimed at decreasing or inhibiting Piezo1 could represent a novel strategy to treat LN.
期刊介绍:
Kidney International (KI), the official journal of the International Society of Nephrology, is led by Dr. Pierre Ronco (Paris, France) and stands as one of nephrology's most cited and esteemed publications worldwide.
KI provides exceptional benefits for both readers and authors, featuring highly cited original articles, focused reviews, cutting-edge imaging techniques, and lively discussions on controversial topics.
The journal is dedicated to kidney research, serving researchers, clinical investigators, and practicing nephrologists.