肠道微生物群致癌物质代谢导致远端组织肿瘤

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Pub Date : 2024-07-31 DOI:10.1038/s41586-024-07754-w
Blanka Roje, Boyao Zhang, Eleonora Mastrorilli, Ana Kovačić, Lana Sušak, Ivica Ljubenkov, Elena Ćosić, Katarina Vilović, Antonio Meštrović, Emilija Lozo Vukovac, Viljemka Bučević-Popović, Željko Puljiz, Ivana Karaman, Janoš Terzić, Michael Zimmermann
{"title":"肠道微生物群致癌物质代谢导致远端组织肿瘤","authors":"Blanka Roje, Boyao Zhang, Eleonora Mastrorilli, Ana Kovačić, Lana Sušak, Ivica Ljubenkov, Elena Ćosić, Katarina Vilović, Antonio Meštrović, Emilija Lozo Vukovac, Viljemka Bučević-Popović, Željko Puljiz, Ivana Karaman, Janoš Terzić, Michael Zimmermann","doi":"10.1038/s41586-024-07754-w","DOIUrl":null,"url":null,"abstract":"Exposure to environmental pollutants and human microbiome composition are important predisposition factors for tumour development1,2. Similar to drug molecules, pollutants are typically metabolized in the body, which can change their carcinogenic potential and affect tissue distribution through altered toxicokinetics3. Although recent studies demonstrated that human-associated microorganisms can chemically convert a wide range of xenobiotics and influence the profile and tissue exposure of resulting metabolites4,5, the effect of microbial biotransformation on chemical-induced tumour development remains unclear. Here we show that the depletion of the gut microbiota affects the toxicokinetics of nitrosamines, which markedly reduces the development and severity of nitrosamine-induced urinary bladder cancer in mice6,7. We causally linked this carcinogen biotransformation to specific gut bacterial isolates in vitro and in vivo using individualized bacterial culture collections and gnotobiotic mouse models, respectively. We tested gut communities from different human donors to demonstrate that microbial carcinogen metabolism varies between individuals and we showed that this metabolic activity applies to structurally related nitrosamine carcinogens. Altogether, these results indicate that gut microbiota carcinogen metabolism may be a contributing factor for chemical-induced carcinogenesis, which could open avenues to target the microbiome for improved predisposition risk assessment and prevention of cancer. A study links environmental nitrosamines to bladder cancer through their metabolism by specific commensal microorganisms occurring in the gastrointestinal tract of humans and mice.","PeriodicalId":18787,"journal":{"name":"Nature","volume":null,"pages":null},"PeriodicalIF":50.5000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41586-024-07754-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Gut microbiota carcinogen metabolism causes distal tissue tumours\",\"authors\":\"Blanka Roje, Boyao Zhang, Eleonora Mastrorilli, Ana Kovačić, Lana Sušak, Ivica Ljubenkov, Elena Ćosić, Katarina Vilović, Antonio Meštrović, Emilija Lozo Vukovac, Viljemka Bučević-Popović, Željko Puljiz, Ivana Karaman, Janoš Terzić, Michael Zimmermann\",\"doi\":\"10.1038/s41586-024-07754-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exposure to environmental pollutants and human microbiome composition are important predisposition factors for tumour development1,2. Similar to drug molecules, pollutants are typically metabolized in the body, which can change their carcinogenic potential and affect tissue distribution through altered toxicokinetics3. Although recent studies demonstrated that human-associated microorganisms can chemically convert a wide range of xenobiotics and influence the profile and tissue exposure of resulting metabolites4,5, the effect of microbial biotransformation on chemical-induced tumour development remains unclear. Here we show that the depletion of the gut microbiota affects the toxicokinetics of nitrosamines, which markedly reduces the development and severity of nitrosamine-induced urinary bladder cancer in mice6,7. We causally linked this carcinogen biotransformation to specific gut bacterial isolates in vitro and in vivo using individualized bacterial culture collections and gnotobiotic mouse models, respectively. We tested gut communities from different human donors to demonstrate that microbial carcinogen metabolism varies between individuals and we showed that this metabolic activity applies to structurally related nitrosamine carcinogens. Altogether, these results indicate that gut microbiota carcinogen metabolism may be a contributing factor for chemical-induced carcinogenesis, which could open avenues to target the microbiome for improved predisposition risk assessment and prevention of cancer. A study links environmental nitrosamines to bladder cancer through their metabolism by specific commensal microorganisms occurring in the gastrointestinal tract of humans and mice.\",\"PeriodicalId\":18787,\"journal\":{\"name\":\"Nature\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":50.5000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41586-024-07754-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.nature.com/articles/s41586-024-07754-w\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-024-07754-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

暴露于环境污染物和人体微生物组的组成是肿瘤发生的重要易感因素1,2。与药物分子类似,污染物通常会在人体内代谢,从而改变其致癌潜力,并通过改变毒代动力学影响组织分布3。尽管最近的研究表明,与人类相关的微生物可对多种异种生物进行化学转化,并影响由此产生的代谢物的特征和组织暴露4,5,但微生物的生物转化对化学物质诱导的肿瘤发生的影响仍不清楚。在这里,我们发现肠道微生物群的减少会影响亚硝胺的毒代动力学,从而显著降低亚硝胺诱发的小鼠膀胱癌的发病率和严重程度6,7。我们分别使用个体化细菌培养物和非生物小鼠模型,在体外和体内将这种致癌物质的生物转化与特定的肠道细菌分离物联系起来。我们测试了来自不同人体供体的肠道群落,证明微生物致癌物的代谢因人而异,并证明这种代谢活动适用于结构相关的亚硝胺致癌物。总之,这些结果表明,肠道微生物群致癌物代谢可能是化学物质诱导致癌的一个促成因素,这为针对微生物群改进易感性风险评估和癌症预防开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gut microbiota carcinogen metabolism causes distal tissue tumours
Exposure to environmental pollutants and human microbiome composition are important predisposition factors for tumour development1,2. Similar to drug molecules, pollutants are typically metabolized in the body, which can change their carcinogenic potential and affect tissue distribution through altered toxicokinetics3. Although recent studies demonstrated that human-associated microorganisms can chemically convert a wide range of xenobiotics and influence the profile and tissue exposure of resulting metabolites4,5, the effect of microbial biotransformation on chemical-induced tumour development remains unclear. Here we show that the depletion of the gut microbiota affects the toxicokinetics of nitrosamines, which markedly reduces the development and severity of nitrosamine-induced urinary bladder cancer in mice6,7. We causally linked this carcinogen biotransformation to specific gut bacterial isolates in vitro and in vivo using individualized bacterial culture collections and gnotobiotic mouse models, respectively. We tested gut communities from different human donors to demonstrate that microbial carcinogen metabolism varies between individuals and we showed that this metabolic activity applies to structurally related nitrosamine carcinogens. Altogether, these results indicate that gut microbiota carcinogen metabolism may be a contributing factor for chemical-induced carcinogenesis, which could open avenues to target the microbiome for improved predisposition risk assessment and prevention of cancer. A study links environmental nitrosamines to bladder cancer through their metabolism by specific commensal microorganisms occurring in the gastrointestinal tract of humans and mice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
期刊最新文献
The Amazon’s gargantuan gardeners: manatees Publisher Correction: Single-crystalline metal-oxide dielectrics for top-gate 2D transistors The baseless stat that could be harming Indigenous conservation efforts Cough or sneeze? How the brain knows what to unleash Fur farming a ‘viral highway’ that could spark next pandemic, say scientists
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1