发现 RGT-018:一种针对 KRAS 驱动型癌症的强效、选择性和口服生物可用性 SOS1 抑制剂。

IF 5.3 2区 医学 Q1 ONCOLOGY Molecular Cancer Therapeutics Pub Date : 2024-08-01 DOI:10.1158/1535-7163.MCT-24-0049
Fei Xiao, Kailiang Wang, Xinjuan Wang, Huijuan Li, Zhilong Hu, Xiaoming Ren, Wei Huang, Teng Feng, Lili Yao, Jing Lin, Chunlai Li, Zhuanzhuan Zhang, Liufeng Mei, Xiaotian Zhu, Wenge Zhong, Zhi Xie
{"title":"发现 RGT-018:一种针对 KRAS 驱动型癌症的强效、选择性和口服生物可用性 SOS1 抑制剂。","authors":"Fei Xiao, Kailiang Wang, Xinjuan Wang, Huijuan Li, Zhilong Hu, Xiaoming Ren, Wei Huang, Teng Feng, Lili Yao, Jing Lin, Chunlai Li, Zhuanzhuan Zhang, Liufeng Mei, Xiaotian Zhu, Wenge Zhong, Zhi Xie","doi":"10.1158/1535-7163.MCT-24-0049","DOIUrl":null,"url":null,"abstract":"<p><p>KRAS is the most frequently dysregulated oncogene with high prevalence in NSCLC, colorectal cancer, and pancreatic cancer. FDA-approved sotorasib and adagrasib provide breakthrough therapies for cancer patients with KRASG12C mutation. However, there is still high unmet medical need for new agents targeting broader KRAS-driven tumors. An emerging and promising opportunity is to develop a pan KRAS inhibitor by suppressing the upstream protein SOS1. SOS1 is a key activator of KRAS and facilitates the conversion of GDP-bound KRAS state to GTP-bound KRAS state. Binding to its catalytic domain, small molecule SOS1 inhibitor has demonstrated the ability to suppress KRAS activation and cancer cell proliferation. RGT-018, a potent and selective SOS1 inhibitor, was identified with optimal drug-like properties. In vitro, RGT-018 blocked the interaction of KRAS:SOS1 with single digit nM potency and is highly selective against SOS2. RGT-018 inhibited KRAS signaling and the proliferation of a broad spectrum of KRAS-driven cancer cells as a single agent in vitro. Further enhanced anti-proliferation activity was observed when RGT-018 was combined with MEK, KRASG12C, EGFR or CDK4/6 inhibitors. Oral administration of RGT-018 inhibited tumor growth and suppressed KRAS signaling in tumor xenografts in vivo. Combination with MEK or KRASG12C inhibitors led to significant tumor regression. Furthermore, RGT-018 overcame the resistance to the approved KRASG12C inhibitors caused by clinically acquired KRAS mutations either as a single agent or in combination. RGT-018 displayed promising pharmacological properties for combination with targeted agents to treat a broader KRAS-driven patient population.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of RGT-018: a Potent, Selective and Orally Bioavailable SOS1 Inhibitor for KRAS-driven Cancers.\",\"authors\":\"Fei Xiao, Kailiang Wang, Xinjuan Wang, Huijuan Li, Zhilong Hu, Xiaoming Ren, Wei Huang, Teng Feng, Lili Yao, Jing Lin, Chunlai Li, Zhuanzhuan Zhang, Liufeng Mei, Xiaotian Zhu, Wenge Zhong, Zhi Xie\",\"doi\":\"10.1158/1535-7163.MCT-24-0049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>KRAS is the most frequently dysregulated oncogene with high prevalence in NSCLC, colorectal cancer, and pancreatic cancer. FDA-approved sotorasib and adagrasib provide breakthrough therapies for cancer patients with KRASG12C mutation. However, there is still high unmet medical need for new agents targeting broader KRAS-driven tumors. An emerging and promising opportunity is to develop a pan KRAS inhibitor by suppressing the upstream protein SOS1. SOS1 is a key activator of KRAS and facilitates the conversion of GDP-bound KRAS state to GTP-bound KRAS state. Binding to its catalytic domain, small molecule SOS1 inhibitor has demonstrated the ability to suppress KRAS activation and cancer cell proliferation. RGT-018, a potent and selective SOS1 inhibitor, was identified with optimal drug-like properties. In vitro, RGT-018 blocked the interaction of KRAS:SOS1 with single digit nM potency and is highly selective against SOS2. RGT-018 inhibited KRAS signaling and the proliferation of a broad spectrum of KRAS-driven cancer cells as a single agent in vitro. Further enhanced anti-proliferation activity was observed when RGT-018 was combined with MEK, KRASG12C, EGFR or CDK4/6 inhibitors. Oral administration of RGT-018 inhibited tumor growth and suppressed KRAS signaling in tumor xenografts in vivo. Combination with MEK or KRASG12C inhibitors led to significant tumor regression. Furthermore, RGT-018 overcame the resistance to the approved KRASG12C inhibitors caused by clinically acquired KRAS mutations either as a single agent or in combination. RGT-018 displayed promising pharmacological properties for combination with targeted agents to treat a broader KRAS-driven patient population.</p>\",\"PeriodicalId\":18791,\"journal\":{\"name\":\"Molecular Cancer Therapeutics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cancer Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/1535-7163.MCT-24-0049\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-24-0049","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

KRAS 是最常见的失调癌基因,在 NSCLC、结直肠癌和胰腺癌中发病率很高。美国 FDA 批准的 sotorasib 和 adagrasib 为 KRASG12C 突变的癌症患者提供了突破性疗法。然而,针对更广泛的 KRAS 驱动肿瘤的新药仍有大量医疗需求未得到满足。通过抑制上游蛋白 SOS1 开发泛 KRAS 抑制剂是一个新兴且前景广阔的机会。SOS1 是 KRAS 的关键激活剂,能促进 GDP 结合的 KRAS 状态向 GTP 结合的 KRAS 状态转化。小分子 SOS1 抑制剂与它的催化结构域结合,具有抑制 KRAS 活化和癌细胞增殖的能力。RGT-018 是一种强效的选择性 SOS1 抑制剂,具有最佳的类药物特性。在体外,RGT-018 以个位数 nM 的效力阻断 KRAS 与 SOS1 的相互作用,并对 SOS2 具有高度选择性。在体外,RGT-018 作为一种单药抑制了 KRAS 信号传导和多种 KRAS 驱动的癌细胞的增殖。当 RGT-018 与 MEK、KRASG12C、表皮生长因子受体(EGFR)或 CDK4/6 抑制剂联用时,抗增殖活性进一步增强。口服 RGT-018 可抑制肿瘤生长并抑制体内肿瘤异种移植物的 KRAS 信号传导。与 MEK 或 KRASG12C 抑制剂联用可显著抑制肿瘤生长。此外,RGT-018 作为单药或联合用药都能克服临床获得性 KRAS 突变导致的对已批准的 KRASG12C 抑制剂的耐药性。RGT-018显示出与靶向药物联合治疗更广泛的KRAS驱动患者群体的良好药理特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovery of RGT-018: a Potent, Selective and Orally Bioavailable SOS1 Inhibitor for KRAS-driven Cancers.

KRAS is the most frequently dysregulated oncogene with high prevalence in NSCLC, colorectal cancer, and pancreatic cancer. FDA-approved sotorasib and adagrasib provide breakthrough therapies for cancer patients with KRASG12C mutation. However, there is still high unmet medical need for new agents targeting broader KRAS-driven tumors. An emerging and promising opportunity is to develop a pan KRAS inhibitor by suppressing the upstream protein SOS1. SOS1 is a key activator of KRAS and facilitates the conversion of GDP-bound KRAS state to GTP-bound KRAS state. Binding to its catalytic domain, small molecule SOS1 inhibitor has demonstrated the ability to suppress KRAS activation and cancer cell proliferation. RGT-018, a potent and selective SOS1 inhibitor, was identified with optimal drug-like properties. In vitro, RGT-018 blocked the interaction of KRAS:SOS1 with single digit nM potency and is highly selective against SOS2. RGT-018 inhibited KRAS signaling and the proliferation of a broad spectrum of KRAS-driven cancer cells as a single agent in vitro. Further enhanced anti-proliferation activity was observed when RGT-018 was combined with MEK, KRASG12C, EGFR or CDK4/6 inhibitors. Oral administration of RGT-018 inhibited tumor growth and suppressed KRAS signaling in tumor xenografts in vivo. Combination with MEK or KRASG12C inhibitors led to significant tumor regression. Furthermore, RGT-018 overcame the resistance to the approved KRASG12C inhibitors caused by clinically acquired KRAS mutations either as a single agent or in combination. RGT-018 displayed promising pharmacological properties for combination with targeted agents to treat a broader KRAS-driven patient population.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.20
自引率
1.80%
发文量
331
审稿时长
3 months
期刊介绍: Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.
期刊最新文献
A novel designed anti-PD-L1/OX40 bispecific antibody augments both peripheral and tumor-associated immune responses for boosting anti-tumor immunity. Pancreatic CAF-derived Autotaxin (ATX) drives autocrine CTGF expression to modulate pro-tumorigenic signaling. Novel Amanitin-based Antibody Drug Conjugates (ATAC®) targeting TROP2 for the treatment of Pancreatic Cancer. Characteristics of a CCL21-gene modified dendritic cell vaccine utilized for a clinical trial in non-small cell lung cancer. Modeling the acute mucosal toxicity to fractionated radiotherapy combined with the ATM inhibitor WSD0628.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1